
                                                                                                                                    

Fourth degree Casimir operator of the semisimple graded 
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The Casimir operators of the graded Lie algebra (Sp(2N);2N) [denoted also by OSp(112N) in the 
literature] are discussed. A general method. according to which the higher degree Casimir operators of 
the graded Lie algebras. in our case of the (Sp(2N);2N). can be constructed is developed. It is shown 
that the third degree Casimir operator of this graded Lie algebra does not exist. The Casimir operator of 
the fourth degree is derived explicitly. 

I. INTRODUCTION 

In recent years much attention has been devoted 
in the physical and mathematical literature to the 
graded Lie algebras (GLA's). By various methods in a 
number of papers the problem of classification of these 
GLA's (see Refs. 1-5) from a different point of view 
has been studied. 

For physical applications of graded Lie algebras it is, 
of course, necessary to know, besides the classifica­
tion of the GLA's the classification of their irreducible 
representations. However, the problem of classification 
(and consequently of the construction) of the irreducible 
representations of the GLA's has not yet been satis­
factorily solved. 

Only for the simplest GLA's: (Sp(2);2) and (SL(2) 
0GL(I); 202) (see Refs. 2 and 6), has the irreducible 
representations been classified and explicitly 
constructed. We here denote the GLA's according to 
the notation of ReL 3. 

A question of considerable importance for the solu­
tion of the up to date open problem of classification of 
the irreducible representations of the GLA's is the 
problem of constructing the complete set of independent 
Casimir operators of the GLA's (similar to the 
classical Lie algebras). Pais and Rittenberg2 introduce 
this problem as one of those which has to be solved. 
The reason for this consists in the fact that the Casimir 
operators possess for the classification of the 
irreducible representations of the graded Lie algebras 
a nonsubstitutional role, contrary to Lie algebras in 
which representations may be classified either with the 
aid of the highest weight (which is the most general, 
and in literature the most applied approach) or by an 
equivalent way through the eigenvalues of the Casimir 
operators. A general definition of the Casimir operators 
has been given in Ref. 7 in which Backhouse (for the 
graded Lie algebras) has generalized the concepts well 
known from the representation theory of Lie algebras. 

Nevertheless, to construct explicitly the Casimir 
operators of higher degree according to the approach 
given by Backhouse (as he himself emphasizes) is a 
very tedious problem. 

In this way, the effort to find the simplest, and for 
practical purposes useful~ method for the constr~ction 

of the higher degree Casimir operators of the graded 
Lie algebras arises naturally. [For Lie algebras, 
e. g., SU(n), O(2n + 1), O(2n), and Sp(2n) such a 
simplified method of the contruction of the higher 
degree Casimir operators has been developed by Okubo, 
see, e. g., Ref. 8.] At the same time, it is useful to 
search for expreSSions of higher degree Casimir opera­
tors of the graded algebras, such that for Okubo's 
type, higher degree Casimir operators of the Lie 
subalgebras will appear explicitly along with the eigen­
values which are possible to be found according to 
already worked out methods (see, e. g. , Refs, 8 and 9). 

The purpose of this paper is to discuss and derive the 
higher degree Casimir operators of one of the simplest 
semisimple graded Lie algebras, i. e., the algebra 
(Sp(2N);2N), which has been mentioned in the classical 
paper of Pais and Rittenberg. 2 The suggested method 
enables us to construct all the Casimir operators of the 
graded Lie algebra (Sp(2N);2N) (Le., of the 2,4,6, •.. , 
2Nth degree) which include the (same degree, indepen­
dent) Casimir operators of the Lie subalgebras Sp(2N). 

It is shown that the third degree Casimir operators 
of the GLA's (Sp(2N)j2N) do not exist. The Casimir 
operators of the fourth degree are then found explicitly, 

As to the content of the paper: The structure of the 
graded Lie algebra (Sp(2N);2N) is recalled in the 
second section in detaiL In Sec. III the higher degree 
Casimir operators of the algebra (Sp(2N); 2N) are dis­
cussed and some of them are given in explicit form. 
Useful mathematical identities are given in Appendix A, 
Appendix B contains the full derivation of the fourth 
degree Casimir operator. 

II. STRUCTURE OF THE SYMPLECTIC LIE 
ALGEBRA Sp(2N) AND GRADED LIE ALGEBRA 
(Sp(2N); 2N) 

A. Lie algebra Sp(2N) 

The symplectic group Sp(2N) is formed by the linear 
transformations10 (in the 2N-dimensional space) which 
leave the bilinear form 

[x,y]= 2:) giJxiYj 
i.}=-N 

N 

= 2:) (x jY _j - X _jY j) 
i=l 

(1) 
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invariant. 8 He~e the components gij of the metric 
tensor are defmed as 

with 

)

lfori>O, 

Ei= o for i=O, 

- 1 for i < O. 

(2) 

(3) 

The generatorsB Xij (i,j = -N, ••• , -1, 1, ..• ,N) (denoted 
as X; in Ref. 8) of its algebra fulfil the commutation 
relations 

[Xii ,Xkl] = 0kjXil - 0ilXki + EiEjO_liXk-j 

+ E/kO-ikX_jl' (4) 

They may be represented in the coordinate representa­
tion by the differential operators as 

from which the following relations for the generators 
Xij follows: 

EiEiXij = -X_j _i , 

N 

L;xj.=o. 
}=-N J 

(5) 

(6) 

(7) 

The dimension of the algebra Sp(2N) (the number of 
independent generators X ij) is N(2N + 1). By using the 
differential form for the generators X ij , Eq. (5), the 
equation which describes the transformation properties 
of the 2N -dimensional vector x [with components x k' 

k=-N, ••• ,-1,1,.,.,N)] is given by 

[Xlj ,Xk] = 0kjX i -EiCiO-ikX-i 

= (Qij)lkXI' (8) 

Here the matrices Qij consisting of the matrix elements 

represent the Sp(2N) generators in the lowest, L e, , 
the 2N -dimensional representation, 

Denoting by g the matrix whose matrix elements 

(9) 

gij are given by Eq. (2), we can write down the relation 
between the matrices Qij and their transposed matrices 
QL in the following form, 

Qiig = -gQfi 

(from which it follows that the gQij is the symmetric 
matrix). 

B. The graded Lie algebra (Sp(2N);2N) 

The graded Lie algebra (Sp(2N);2N) is formed by the 
operatorsXij and Vi (i,j=-N, ..• ,-1,1, •.• ,N). The 
Xij are at the same time the generators of the algebra 
Sp(2N) and the Vi components of the irreducible [wo r, 10 
Sp(2N)l operator, which transforms under the lowest 
2N-dimensional representation of the group Sp(2N). The 
transformation properties of the operators Vi w. r. t 
Xij are therefore identical with those of Xi (components 
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of x) in Eq. (8) and the equations 

[Xi" Vk]=(Qi)lkVI 

=1\,Vi -EiE/>_ikV_j' (11) 

The GLA (Sp(2N);2N), generated by the operators Xi} 
and Vi' is defined besides Eqs. (4) and (11) by the 
"prod11cts" of two operators Vk and VI which are 
represented by the anticommutators {V k' VI}' The 
algebra of operators X i' and V k is then closed if the 
relation 

{Vk, V I }= (gQij)kIXji 

is fulfilled. 

By using Eqs. (2), (9), (11), and (12) the Jacobi 
identities 

(12) 

[Vi' {Vk' Vlr]+[Vk, {VI' V,}]+[V p {Vi' Vkr]=O, (13) 

[Xii' {Vk' VI}] + {[Vk, Xij], VI}+{[VP Xij]' Vkr=O, (14) 

can be immmediately verified, As a result, by Eqs, (4), 
(11), and (12), the graded Lie algebra (Sp(2N);2N) is 
defined. 

Equation (12) by the use of Eqs. (2), (9), and (6) may 
be also rewritten into a simpler and useful form 

(15) 

III. CONSTRUCTION OF HIGHER INVARIANTS OF 
THE LIE ALGEBRA Sp(2N) AND GRADED ALGEBRA 
(Sp(2N); 2N) 

A. The construction of the irreducible tensors and 
invariants [w.r.t. the group Sp(2N)] with the aid of 
the operators Xij and Vk 

It is well known8 that with the aid of the generators 
Xij of the symplectic algebra Sp(2N) it is possible to 
construct the irreducible tensors 

T~P)= t X .. X .. X .. 
lJ i1d.,fooDti =-N 1t1 "1"2 1.21-3 

- P 

(16) 

which have the same transformation properties as the 
generators X ij' L e., they fulfil the commutation 
relations 

[X T (P)]-" T(P) " T(p) ij' kl -v kj il -Vii kj 

+ EiEjO_I} Tk~l + fhO-ik T:f1. (17) 

Analogously, by using relations (4) and (11), we find that 
the operator V~, defined by the equation 

+N 

V~= 0Xkj V., 
j=-N J 

(18) 

has the same transformation properties as the operator 
Vk,Le., 

[Xij' V~]=6kY~ -EiE/I~ikV~j" 

The operator V; also has the same transformation 
properties as the operators V k and V ~, in case it is 
defined as 

+N 

V " l' V' k=LJXkj .. 
,=-N J 
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From the above-mentioned construction of operators 
V: and V; it is apparent how to further construct the 
operators of this kind. 

In the frame of bilinear combinations of generators 
V

k
' there is the following one, 11 

(21) 

This operator is remarkable by the fact that its trans­
formation properties (w. r. t. Sp(W)] are identical with 
the transformation properties of the generator X~I' 
i. e. , the following relations are valid, 

[Xij , T~/] = 0kj T;I - (j II T~j + EiEjO_lj Tk-i 

+ E/kO_i.T:jl · (22) 

If we have any two operators T kI' T~" which transform 
in the same way as the generators ~l> then the expres­
sion 'f,:'/~_NTuT:k' constructed with the help of them, 
represents an invariant w 0 r. t. X lj , L e., we have 

(23) 

Similarly, if we have two vectors V~, V'~ which trans­
form [under the Sp(2N)J as the vector X k , then the 
bilinear combination of operators V~ and V;, defined as 

(24) 

also represents an Sp(2N)-invariant, so that the com­
mutator is equal to zero, 

B. Construction of the invariants of the graded Lie 
algebra (Sp(2N); 2N) 

(25) 

As we have already mentioned in the Introduction, the 
construction of the second degree Casimir operators of 
GLA's has been discussed in a number of papers: In 
the case of the algebra (Sp(2N);2N) it is possible to 
write, with the aid of generators Xlj and Vi' the 
Casimir operator of the second degree in the form 

K2=XijXJi + VjgijVr (26) 

By using relations (11) and (12) it is easily found that 
V m commutes with the operator K 2 , 

[K2' Vm]=O. 

The relation 

[K2' Xij]=O 

is evident, as the two terms in the K2 are Sp(2N)­
invariants w. r. t. the operators X iJ separately. 

In the next discussion we mention the Casimir 
operators of the third and fourth degree in details. 

(28) 

It is well known that the Casimir operator of the third 
degree, defined by the equation8 

C 3 =Xi~jkXkP (29) 

is not independent for the symplectic algebra SpeW) 
(contrary to, e. g., the algebra SU(n)] and it is 
expressed with the aid of the independent quadratic 
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Casimir operator Cz =XiJCJi by the equation 

C3 =2(N+1)Cz o (30) 

Thus, the question arises, whether the invariant of the 
third degree of the graded algebra (Sp(2N);2N) is possi­
ble to be constructed with the aid of the generators Xij 
and V

k
• Using the following equations: 

Sp(Qi·j.Qji) = 20 ii .OjJ' - 2E i .Ej .0j-i.0j-j" (31) 

gQijg=Q'{t==QjP (32) 

for the matrices Q iJ' defined by Eq. (9) (the matrix 
elements of g are components of the metric tensor), 
from Eq. (12) the relation 

(33) 

can be derived. This of course, means that the 
bilinear combination Vk(gQij)kl VI of the generators Vk, 
which have the same transformation properties as the 
generator X jil is in the graded algebra directly pro­
portional to this generator. Therefore, the Sp(2N) 
invariant of the third degree Vk(gQjj)kl V1X jj is in the 
graded algebra (Sp(2N);2N) expressed with the help of 
the quadratic Casimir operator C2 by the equation 

(34) 

The bilinear combination of operators Vk , defined by 
Eq. (21), represents the operator with the same trans­
formation properties which has the generator X kl • With 
the help of it, it is possible again to define the Sp(2N) 
invariant of the third degree, 

T~/X'k' (35) 

As, of course, the relation 

(36) 

is valid (see Appendix A) it is evident that the operator 
(35) as well the operator (34) is proportional to the 
quadratic Casimir operator Cz• It means that it is 
not possible to find, Le., it does not exist, a third 
degree invariant of the graded algebra (Sp(2N);2N). 
From the three operators V k , namely, it is not possible 
either to construct the Sp(2N) invariant. 

Now, we start the discussion of the Casimir operator 
of the fourth degree of the graded algebra (Sp(2N);2N). 

The Casimir operator of the fourth degree of the Lie 
sllbalgebra Sp(2N) is known from the paper in Ref. 8, 

(37) 

For further discllssion it is very advantageolls to llse 
the operator 

(38) 

which has the same transformation properties as the 
operator Xii' Then the Casimir operator C4 of the Lie 
subalgebra Sp(2N) may be written down as 

(39) 

As we have mentioned above, the operator T~I == 
-€, V_I V k , bilinear in the V k [see Eq. (21)] has the 
same transformation properties as the operator X. , . 
With the help of operators T~I and T., it is possible to 
construct two operators of the fonrth degree (which 
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contain two operators of the type Xl} and two operators 
of the type V k)' 

E.J V-j Vj.TJj' TipE_1 V-J VJ•• (40) 

It has been mentioned before that it is possible to 
construct the Sp(2N)-invariant with the aid of the 
operators V; defined by Eq. (18)0 The operator 

V~kk'V~,= V~Ek V~k (41) 

is also a Sp(2N) invariant of the fourth degree [see Eq. 
(24)]. Of course, the operators, Eqso (40) and (41), are 
not independenL Using Eqs. (4), (11), and (15) the 
following relations may be found: 

V~kk'V~.= Tjj'cj V o , Vj,+XkJXjk' (42) 

V~~ •• V~.=E_J V_J VJ' T jJ • +X.JXJ•• (43) 

in which besides the operators of the fourth degree 
quadratic Casimir operator C2 of the algebra Sp(2N) 
appears. 

It remains to construct the Sp(2N) invariant with the 
aid of the product of four operators V.o The simplest 
possibility is to take such an operator in the form 

+N +N 

("BE_.V_JV.)("B E..,v_ .• V.,). 
j =-N J J J'=-N J J J 

The other possibility is to take the operator in the 
following form, 

T;, T:~=E_1 V_I V.E_. V_. VI. 

(44) 

(45) 

where T~, is defined by Eq. (21). The operators (44) 
and (45) are certainly not independent as the following 
relation between them is valid, 

1'_1 V_I V.E_. V_k VI = - (E.I V_I Vl)(€k Vk V_.) 

+ 4Xj.xkJ + 2(2N + 1)E_1 V_I VI' (46) 

The Casimir operator of the fourth degree of the graded 
algebra (Sp(2N);2N) can be constructed with the help 
of the described Sp(2N)-invariants (39), (40), and (44L 
By using relations (4), (11), and (12) we can verify that 
the Casimir operator of the fourth degree is given as 

TJ'J TJJ' - (2N
2 + 5N + 3)XkJ VJgU.Kk•J• VJ' 

+ t(2~ + 5N + 5)(1'_1 V -J VJ' T lj • + TjJ.crV -j' Vi) 

- t(CJ V_, VJ )(E_)' V -J' Vj .) = K 4 • (47) 

Namely, by using the above-mentioned equations, it can 
be proved that the following is valid, 

(K4 • V ml=O (m=-N, ••• , +N). 

The proof of this statement is given in details in 
Appendix B. 

CONCLUSION 

(48) 

The simplest Casimir operators of the graded Lie 
algebra (Sp(2N) ;2N) were discussed. It was found that 
besides the quadratic Casimir operator, which is known 
from a number of papers, the Casimir operator of the 
fourth degree also exists. The third degree Casimir 
operator of the graded Lie algebra (Sp(2N);2N) does not 
exist. The position with the graded Lie algebra (Sp(W); 
W) is in this respect very similar to that with the 
symplectic Lie algebra Sp(2N), where the independent 
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Casimir operators are only of even degree. The Casimir 
operators of odd degree of the algebra Sp(2N)-contrary 
to the graded algebra (Sp(2N);2N)-exist, but are 
linearly dependent on the Casimir operators of lower 
degrees 0 The method used in this paper, for the 
derivation of Casimir operators of the f01lrth degree 
K4 can be simply generalized and applied for the deriva­
tion of any higher Casimir operator, i. eo, the operator 
of the sixth degree, eight degree, etc. 

In a general case the Casimir operator of the 2nth 
degree of the GLA (Sp(2N);2N) will consist of the 
Sp(2N)-invariants formed by the polynomial 2nth degree 
in the generators XiJ and V k' The 2nth degree 
polynomial in the Xi} is naturally the Sp(2N)-Casimir 
operator 

T T '''T 
i112 i2i3 i"i 1 ' 

Further, a contribution will come from all operators 
which are polynomials of the (2n - 2m)th degree in XiJ 
and of the 2mth degree polynomials in V k (m = 1 ,2, ... , 
n) as 

T.' .T . . " ·T .. 
'1$2 1.21.3 IntI 

T T' '''T 
/112 i2 13 i"i 1 

Of course, the last operator will be the polynomial 
of the 2nth degree in V k' 

T~ . T~ .... T .. 
'1'2 '2'3 'ntl 

T he solution of the problem as to how the particlliar 
operators will contribute to the Casimir operators 
K 2n may be found directly. 

Obviously the Ullmber of independent Casimir opera­
tors of the graded algebra (Sp(2N);2N) is at least equal 
to the Ullmber of independent Casimir operators of the 
Lie subalgebra Sp(2Nl, 

APPENDIX A 
A. The derivation of relation (A 1 ) 

(AI) 

If we carry out in the operator VI' V_ikX'j' the change 
of indices·k - - j', j' - - k, we can rewrite this 
operator as V_k Vj.E.j.X_}'_ •. If in addition we use Eqo 
(6), this operator may be rewritten in the form 
V_kVJ,E.Xkj ,. Therefore, it is possible to write 

Using relation (15) we get 

tEt{VJ" V_k}Xkj'= - xJ,kXW ' 

(A2) 

If we use Eq. (A2) we obtain Eq. (AI). In a similar way 
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it is possible to prove the following relations: 

XJ'kXkJ' = Vj,V_k£j,X_i'_k' 

Xj·kXkJ' = XJ'k Vkcj.v_ j• 

and a nl1mber of others, 

B. The deirvation of relation (46) 

U sing relations (11) and (15) we can derive the 
commutation relation 

kjV_jVj, Vm]=-4VjX mj -2(2N+l)V,., 

(A3) 

With the aid of the invariant relation (45) it is possible 
to rewrite the above in the form 

(E_I V _I V k E -k V -k V I) 

=/i_1 V_I(V I VkE.kV_k + 4ViX Ii + 2(2N + 1)V
I

) 

= (e_1 V_I VI )(VkE_k V_k) + 4XJkX kj + 2 

+ 2(2N + OCI V_I VI' 
which is just Eq. (46). 

APPENDIX B: Derivation of the Casimir operator of the 
fourth degree K 4 

Let us consider the s11perposition of the operators 

I =ATJ'J Tjj' + B(E_J V_J VJ.Tw + Tj'/-r V_j'vj} 

+C(cj V_ j Vj)(c j• V_J'Vj') , 

which are defined by the Eqs, (39), (40), and (44), Then 

[I, Vm]=ATj.;[Tjj ., VmJ+A[T"" Vm1Tj,' 

+ BE_j V_, VJ'[ Tjj" V mJ + Bkj V_j Vj" V mlT'i' 

+ BTj'jkj , V_j,Vi , V m} + B[ T"" V m]e_!' V_j' Vj 

+ C(E_j V_; V)[E_;'v_j'Vj" Vm1 

+C[E.jv_jv" Vm}E_,V_,Vr 
By 1Ising relations (4), (11), and (15) with Eq, (6) the 
separate terms in the commlltator [I, V m] can be written 
down in the form 

[T;,;, V mJ Tjj' = 4 VrXmjTJi' - (6N + 3)V_1 T m-I 
+ V_ zX m_z(2N + 2}2N + 3V mTkk 

+ V" T mj" 

(E_j V-J V,., V mJljj'= - 4V;,Xmj Tjj' - 2V".Tkk 

+2(2N+ I)V_j T m_
J 

+2(2N+2)V_jX m_
J

, 

E_j V'J VJl TJ,., V m} = 2(E; V_I Vj }VJ.Xm" - 2V mTkk 

+ (2N + 1)(V_h V)V m - 4VJT mj 

+ 4(N + 1)V
j
X mJ , 

(V_jE_,Vj)[VkEkV_k' VmJ 

= (V-;E-J V j )(- 4VkX mk - 2(2N + I)V m)' 

[Tj ", V m}E_,,V-i' Vj 

= - 2Vj,Xmj,(V_JE~J V j ) - (2N + 1)V m(V_jE_, VJ) 

+ 4VjT mJ + 4(N -1)V,Xm, + 4N(2N + I)V m + 2TkkV m' 

[VkEkV_k, V ml(VlJ V_j) 

= (- 4 VkXmk - 2(2N + OV"'}(VJE) V_j)' 

etc. 
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By using these equations we may simply find that, 
under the assumption A = B = 1, C = - ~, it is possible 
to eliminate in the commutator [I, V m] all terms which 
contain the prod1lcts of four generators of both types, 
XI' and Vk • Namely, we can write: 

w1=[T"j' Vm}Tj,. +k,V_,Vj" Vm]TJJ' 

= - 2NV, T mJ + V mTkk + (2N + 2J2VjX mj , 

w2 = TriTJj' , V m1 + Tj"k,'v_j,v" V mJ 
= 2NTm,V, - TkkV m + 2(2N + 2)Xmj V" 

W3 =t.J V -J Vj • [Ti )' , V ml-1 Vk• Ek, V_ k , [VkEk V_k, V m1 
= - 2V mTkk - 4VJ T mJ + 4(N + OV,XmJ , 

w4 =[T"" Vm]CJ, V_I' V, - HVkt'k V_k " V m1V/J VOJ 

= 4 VJT mj + 4(N - l)V,XmJ + 2TkkV m + 4N(2N + 1)V m' 

Therefore, 
4 

iSfw j =2N[Tm" V,}+[Tkk , Vm] 

+ (4N2 + 16N + 4)V,Xmj + (4N + 4)Xml VJ 

+ 4N(2N + OV m' 

Finally, by using the relations 

[T mJ' VJ1= (2N + I)XmJ VJ - VJXmJ , 

[Tkk , V m] = 2(2V,Xmk + (2N + 1)V m) 

it is possible to write the S11m of wi' L:~.lWP in the form 
4 

i~ Wj = (2N2 + 5N + 3)[ Tkk , V m]' 

Therefore, for the case of A = B = 1, C = -1, the 
operator 

K4 =1 - (2N2 + 5N + 3)Tk• 

fulfils the relation 

[K4 , Vm1=0. 

Using Eqs. (42) and (43) we can write the operator T 
in the form kk 

T kk = V~kk' V,.-1(TJj'E_ j V o , Vi' 

+ E_ j V-l VJ' Tjj ,) 

and gain expreSSion (47) for the Casimir operator K
4
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which fulfils the conditions 

RiJ = - Rj; and gijRij = O. 

The tensor T~l corresponds to the Young tableau LJ LJ, while 
the remaining two tensors correspond to the tableau ,1, which 
appears in the decomposition of the direct product ' 

LJ®O=DOEBD. 
o 
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Representation of para-Fermi algebras is obtained utilizing the operators of a single Fermi field. In 
analogy with Kalnay's para-Grassman algebras, para-Clifford algebras are defined in terms of Fermi 
operators. 

I. INTRODUCTION 

Green l in 1953 gave the representation of the para­
Fermi and para-bose operators by forming linear com­
binations of several different commuting Fermi and 
anticommuting Bose fields respectively. Ramakrishnan 
and his co-workers have obtained representations of 
para-Fermi rings employing the elements of the gener­
alized Clifford algebra. 2,3 Para-Fermi fields of higher 
orders, p > 1, may be related to higher spins. 4 Hence 
there is continued interest in such representations. 

Recently Kalnay5,6 realized the representations of 
para-Fermi operators employing boson operators and 
suitable boson vector spaces. It will be our attempt in 
this note to obtain in Sec. 2 the representations of para­
Fermi operators in terms of the usual anticommuting 
operators belonging to a single Fermi field. In Sec. 3 
we show that some results simi.lar to those of Kalnay5,6 

can also be obtained using Fermi operators and we con­
struct para-Clifford algebras in analogy with Kalnay's 
para-Grassman algebras. 6 

2. REPRESENTATION OF PARA-FERMI ALGEBRA 

Para-Fermi operators of order p, {A;Pl I i"" 1, 2, .•• , 
n}, and their Hermitian conjugates obey the relations 

(1) 

(2) 

(3) 

't/i,j,k=I,2, ••• ,n. 

Green's ansatz of constructing the para-Fermi 
operators of order p is to start with p different Fermi 
fields which commute with each other but anticommute 
among themselves. Thus, letting {(ajll U= 1,2, ... , n) 
i 1= 0, 1, ... , p - 1} and their Hermitian conjugates de­
note the set of p commuting sets of Fermi operators, 
we have to form the linear combinations as 

t:.l 
AjP)=u a<n, j=1,2, ... ,n. 

1=0 J 
(4) 

Then it can be easily seen' that {AjPl} satisfy the rela­
tions (1)-(3). We want to point out that in the above 
construction (4) the original {aj ll} belonging to different 

l's commute with each other since they represent dis­
parate Fermi fields. 

Let us now turn to our efforts to constructing para­
Fermi operators {A~pJ} from the basic operators 
{ai Ij = 1,2, ..• , np} belonging to a single Fermi field. 

It is asserted that {A~Pl}, given by 

(5) 

will satisfy all the conditions required of para -Fermi 
operators of order p [Eqs. (1)-(3)]. 

To this end let us proceed as follows. Defining 

QI;=(a;+a j ). i3;=i(aJ-a j ), j=1,2, ... ,np, 

it is easy to see that 

{Qlj' i3k}=O, 

{Qli' Qlk}""{i3j , i3k}= 21ljk> 

j, k = 1 , 2, ..• , np. 

Now let us define the Hermitian operators 

P "n<2ln+ll(1i i3) 
In+j==l r:1ll'r T Ci 1n+J ' 

( 'n ) -In (21"+1) 
Q In+i = 1 r~' ", r i3r i3 ,n+j , 

j=I,2, ... ,n, l""O,I, ... ,p-l. 

Then it follows immediately that 

{P ,n+i , Q'n+k}= 0, 

{P ,n+i , P,n+k}={Q,n+;' Q'n+ki= 2llik, 

't/ 1 = 0, 1, ... , p - 1 and 't/ j, k = 1 , 2, ... , n, 

and 

[P ,n+;, Pmn+kl= [P ln+i , Qmn+kl 

= [Q In+;' Qmn+kJ = 0 

't/ j, k = 1, 2, ... , nand 1 '" 111 • 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

It is now easy to derive from the {pi and {Q} operators, 
ajll operators of (4) which constitute a set of p commut­
ing Fermi fields. Let us define 

(12) 
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(l)t _l.(P 'Q) 
OJ -2 Zn+j-1ln+i' 

(13) 
"I j == 1, 2, ... ,n and I==O,l, •.. ,p-l. 

Now we have all the necessary ingredients to make use 
of Green's ansatz (4). Therefore, we write 

p-, P-' 
AjP) = L a; I) =f L (P ln +) + iQln+}) 

= ~i: {~ln(21~=+O,) R (Y,I3,) (a In+j + il3ln+A 

=t:{(~n [a" a!J\aln>i}' j= 1,2, ... , n. 
1=0 r_l I) 

This may be written out explicitly if need be as 

AjP)={a j + [a" ail[a2 , a;J··· [an, a~Jan+j 

+ [a" ai][a2, a~]·" [a 2n , a~n]a2n+j 

"Ij=1,2, ••. ,n. 

(14) 

(15) 

For example, if n = 3 and p == 2, we have to take six 
operators {a j I j= 1,2, ... , 6} and their Hermitian con­
jugates of the basic Fermi field and construct the three 
operators of the para-Fermi field of order 2 as 

Ai2) = a, + [a" aiJ[a2, a~][a3' a~la4' 

Ai2 )==a2 + [aI' ail[a" aZJ[a3, a;Ja5 , 

A;2) = a3 + [au a; ][a 2 , a1 J[a 3, a~ J a6 • 

(16) 

The Hermitian conjugates of the operators (14)-(16) are 
easily obtained. It can be directly checked that A;P), 
A;P)t, etc. given by (14) satisfy all the requirements 
[(1)-(3) J characterizing the para-Fermi field of order 
p. 

In the boson description of fermions 5
,6 the para­

Fermi operators constructed from the boson operators 
have to operate on the p -boson subspace of the boson 
state vector space. It is emphasized here that our AjP) 
operators operate on the usual entire fermion state 
vector space and are constructed out of operators be­
longing to a Single Fermi field. 

3. PARA-CLI FFORD ALGEBRA 

Kalnay6 has shown that if 
m 

gi==2: Giysb!b s ' i==1,2, .•• ,n, (17) 
r, s= 1 

where {G;} is any m -dimensional representation of the 
ordinary Grassman algebra and b:, bs , etc. are the 
usual boson operators, then {gi} generates an algebra 
with the commutation relations 

[[.i[o.i[j]' .i[k]==O, Vi,j, k==1,2, ... , n. (18) 

The {.i[J algebra has been called the para-Grassman 
algebra by Kalnay. 6 

In a similar vein let us define 
m 

Ei==6 Mina!a s ' i==1,2, ... ,n, 
r, s= 1 
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(19) 

where {M i} is any m -dimensional representation of a 
given algebra and a~, as' etc. are the usual Fermi 
operators. It is easy to see that 

EiE/k = (M ;MjM k)TSa!a, 

- [(M;M)TSMkN + (MjM k)"M iT'" 

+ (M iM k),sM iT's' ]a!a!,ap s' 

- M ir " /\,1 ir,<;,j\1 kr"s" a;o:, a!" a sas,a s", 

"Ii,j,k=1,2, ... ,n. 

Hence it follows that 

[[E i , Ej ], Ek]=([[M p Mjl, ]Hkl)rsa;a" 

"I i, i,k=1,2" .. ,17. 

In (20) and (21) summation over repeated indices is 
assumed. 

(20) 

(21) 

Taking {MJ to be the representations of the usual 
Grassman algebra (21) shows that {EJ generates a para­
Grassman algebra. 6 In contradistinction to Kalnay's6 
representations we note that the above {E;} involve 
Fermi operators instead of Boson operators. 

If {M J denote the representations of the usual Clifford 
algebra satisfying 

{M i, M j} = 2 Ii iJ ' "I i, j:= 1 , 2, ... , /1, 

then {E;} satisfy the following relationships: 

"I i,j,k=1,2, •..• II. 

(22) 

(23) 

It is to be noted that (23) is a relation met with in the 
case of the Kemmer algebra. 

We may call the E algebra the para-Clifford algebra 
in analogy with the para-Grassman algebra derived by 
Kalnay.6 
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We consider the Feynman amplitudes for aU the essentially and crossed planar graphs of the four-point 
vertex function in <1>3 field theory, and we evaluate their behavior at high energy (large s, fixed t). We 
compute the coefficients of all logarithms for the dominant amplitudes which behave in s -I (up to 
logarithms of s). This computation is performed by using the Bogoliubov-Parasiuk-Hepp R operation 
and the Mellin transform of the Feynman amplitudes. The geometrical structure of the coefficients is such 
that aU logarithms of s of aU dominant amplitudes can be summed to give the well-known Regge behavior 
with signature +. The Regge trajectory verifies an equation which may be solved explicitly in the lowest 
order approximation; the residue is found to be the ratio of two functions of t, the upper one being 
factorized into two vertex functions expressed as infinite series and the lower one providing a ghost killing 
factor. 

INTRODUCTION 

One of the many striking facts when one deals with 
interaction between hadrons is the relevance of the 
Regge picture: the scattering amplitude at high energy 
and small angle is well reproduced by a Regge behavior, 
in particular the energy dependence is a t dependent 
power of s. It is clear that any theory of strong inter­
actions will have to reproduce this fact. 

On the other hand, recent progress in quantum field 
theory, especially in gauge field theories, indicates 
that field theory is likely to provide us an underlying 
strong interaction theory. Consequently, the importance 
of deriving Regge behavior from field theory is quite 
obvious. 

Such a proof exists in potential theory, 1 and, of 
course, it is not a new problem in field theory. Many 
papers have already appeared on reggeization, in 
scalar and gauge field theories, and it is necessary 
to make clear to the reader what we mean really by 
reggeization. We mean by reggeization the property 
of the two-body scattering amplitude at large energy 
s, for a given transfer t, to behave as a sum of terms 
of the form (3(t) SOl (t). We shall not consider here the 
problem of the materialization of the Regge 
trajectories. 2 

Let us now discuss how Regge behavior may be ex­
hibited from field theory. 

One method consists in using the Bethe-Salpeter 
structure of the four-point function in the t channel. 3 

Assuming at large s a factorization property in the t 
channel, a Regge behavior may be proved quite general­
ly for the solution of the Bethe-Salpeter equation. 4 

A second method exploits the large s behavior of 
Feynman graphs. Many papers5 deal with the large s 
behavior of the graphs contributing to the low orders 
of the perturbation series, and then examine the co­
efficients of their logarithms of s, in order to exhibit 
(or not) the beginning of an exponential series. 

In another set of papers, the authors select a sub­
class of diagrams (ladder graphs, for instance) and 

alphysique Tlu~orique CNRS. 

perform the summation of the leading logarithms of s, 
or if possible of more powers of logarithms. 6 

Several other papers determine the leading power of 
s and the maximal power of logarithm of s for the most 
general graph contributing to the amplitude. 7 Precise 
rules are given by Zav'yalov8 for planar convergent 
graphs and by Zav'yalov and Stepanov9 for planar di­
vergent graphs. Unfortunately, no rules are given to 
find the coefficient of the logarithms (at least beyond 
the leading power of logarithm). Efremov et al. 10 in a 
series of papers have described a general procedure 
in order to perform the infinite sum of logarithms of s. 

Our work lies in the same spirit than the papers of 
Zav'yalov, Stepanov, and Efremov. For all graphs of 
Aq} which are not susceptible to contribute to a possible 
Regge cut but only to a possible Regge pole, we prove 
the three following points: 

(1) We prove the existence of a class of dominant 
amplitudes which behave in s·l up to logarithms of s, 
We characterize all graphs of this class (Sec. 2). 

(2) We determine the coefficients of all powers of 
logarithms of s for any graph of the above class. These 
coefficients are expressed in terms of subgraphs and 
reduced graphs (Sec. 3). 

(3) We sum the result (2) over all graphs of the above 
class. The geometrical structure of the coefficients 
of all powers of logarithms of s explains their exponen­
tiation. The functions (3(t) and 0' (t) are found as infinite 
series (Sec. 4). 

Our technique is based on the use of the multiple 
Mellin transform of a Feynman amplitude and of 
Bogoliubov-Parasiuk-Hepp R operator, and is a 
generalization of Ref. 11. 

The rest of this introduction is devoted to a classi­
fication of the graphs contributing to the amplitude and 
also to definitions and notations. 

The connected 4-external legs, Green function 
Cf4) (Pi' m, g) may be expressed in terms of the in­
variants P~ and of the Mandelstam variables 

s = (Pt + P2)2, t = (Pi + Pa)2, U = (Pl + P4)2, (1. 1) 

where the external momentum Pi are ingoing. We re-
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call that these variables are dependent since 
4 

s + t + u == ~ P~ . 
j=1 

(1. 2) 

It is convenient to classify the different Feynman 
graphs contributing to Cf4) (Pi> In, g) in four different 
classes depending upon their topology. 

Definition: Given a connected Feynman graph C with 
n vertices, l internal lines, and L independent loops, 
we define: 

-A one-tree subgraph is a connected tree subgraph 
connecting all the n vertices of C. (Such a one-tree 
may be obtained by cutting L lines of G with the condi­
tion that each cutted line decreases the number of loops 
by one.) 

-A two-tree is a two-connected tree subgraph obtained 
by cutting one line to one of the above one-tree. (One 
of its connected part may be an isolated vertex.) A 
two-tree partitions the external momentum into two 
parts 11 and 12 and 

(1. 3) 

Given a one-tree constructed from a graph G con­
tributing to Gf4)(pj, m,g), this one-tree is called an 
s(resp. t, u)-one-tree if all the two-trees which are 
constructed from it are such that the different squares 

(1. 4) 

which are not 0 or p~ (i = 1, 2, 3,4) are s (resp. t, u). It 
is clear that, for any graph G in cp3, there exists at 
least one two-tree such that the corresponding square 
is either s, t, or u. The Feynman graphs with 4-exter­
nallegs such that all their one-trees are t-one-trees 
contribute to G[4) (t,P;' m,g). The Feynman graphs which 
have at least one s-one-tree but no u-one-trees con­
tribute to G~4) (s, t, pL m,g). The graphs contributing 
to G(4) and G~4) are called essentially planar (all planar 
graphs are essentially planar but many nonplanar 
graphs are also essentially planar as it is shown on 
Fig. 1 where the striped kernels are nonplanar; such 
nonplanar kernels are self-energy graphs or three­
external legs graphs). The Feynman graphs which have 
at least one u-one-tree but no s-one-trees contribute to 
Gr4)(t,u,pLlII,g) and are called crossed planar. Finally 
the remaining graphs which have at least one s- and 
one u-one-tree contribute to Ct4) (s, t, u,p7, nI,g). 

The graphs of G(4)(t,P~, m,g) contribute as a constant 
to the large s, fixed I, behavior of the amplitude. They 
are taken apart from the following evolution of this 
paper and are considered only in the conclusion. 

The graphs contributing to Ci4) for i == 2,3,4 are of 
the form given by Fig. 2, where each black dot rep­
resents a graph which contributes to the complete 

F1G. 1. 
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propagator and where each kernel N j represents a 
graph two-line irreducible in the t channel. If, for a 
given graph C represented by Fig. 2, at least one of 
the subgraphs N; has both s- and u-one-trees, then it 
is clear by the cutting rule of internal lines that G con­
tributes to Gt4) (s, t, u, pL m, g). Such graphs are suscep­
tible to generate Regge cuts6 and are beyond the scope 
of this paper. If, for a given graph G represented by 
Fig. 2, no subgraph Nt has both s- and u-one-trees 
but q subgraphs N j have at least one u-one-tree, then, 
if q is odd, C is a crossed planar graph and contributes 
to Cf4) (t, u, p~,m, g); if q is even, then C contributes to 
Ct4)(S, t, pL nI, g). 

We now define a Feynman amplitude by its 
Schwinger-integral representation 

IJ = (- g)n i-w(G) 12/ 00 ~ dO'a exp (_ i exp(- iE) t 
o a=1 a=1 

(1. 5) 

For E = rr/2, we obtain the amplitude in Euclidean space· 
in Minkowski space leis defined as the limit E - 0 of ' 
IrJ and is known to be a distribution. The external mo­
mentum k(E) are defined as 

(1. 6) 

and scalar products are defined in the Minkowski 
metric (+ - - -) (with this definition the metric in 
Euclidean space is - - - -). The above representation 
is an application of Wick's rotation. In this paper we 
purposely omit writing the E dependence of Ie in most 
cases. The superficial degree of divergence of G is 

w(G) ==4L(G) - 2Z(G), (1. 7) 

where L(G) and l(C) are the number of independent loops 
and the number of internal lines of the graph C. The 
functions dij(O') and P c(O') are characteristic of the 
topology of the graph. The operatorl2 R is a subtraction 
operator which acts directly upon the variables 0' and 
ensures the ultraviolet convergence. We define 

R == lJ (1 - r.;-2l(.) ), 
~ '- G 

(1. 8) 

where the operators T are generalized Taylor opera­
tors and the product runs over the (2 1 

- 1) subgraphs of 
G. 

The generalized Taylor operators T are defined as 
follows: Given a function f(x) such that x-"f(x) is infinite­
ly differentiable for v complex, then 

T;j(x) ==x-X-' Tn.). {xX·'j(x)}. (1. 9) 

This definition is A independent provided that A? - E'(v), 
where E'(v) is the integer part of Rev and E'(v) >- Rev; 
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E = E'(lJ) - lJ. This definition is generalizable to the case 
of several variables a 

(1, 10) 

The method used in this paper to obtain the asymptotic 
behavior of IG at large s, fixed t, is a generalization of 
the method used in Ref. 11 for the behavior of IG when 
external momentum are scaled to infinity. We calculate 
the Mellin transform of the Feynman amplitude in 
regards to the variable which becomes large. Two 
cases may appear. Either, the integrand of the Mellin 
transform expressed in the variable a has a "simutane­
ous Taylor expansion" in every Hepp's sector defined as 
an ordering of the variable a 

(L 11) 

(there are I! sectors); then, the operator ll R defines 
an analytic continuation of the Mellin transform beyond 
the first singularity and extracts the residue at the 
first poleo This residue is closely related to the coef­
ficients of all powers of logarithms for the leading 
powero In Ref. 11 for instance, we have given geometri­
cal rules in terms of subgraphs and reduced graphs to 
describe the coefficients of the powers of logarithms. 
The geometry of these coefficients is such that a sum­
mation of all logarithms of the leading power can be 
performed. 13 Or, the integrand of the Mellin transform 
does not have a "simultaneous Taylor expansion" in 
every Hepp's sector,14 which is the case in this paper. 
It is then necessary to split the a integrand of the 
Mellin transform into several parts, each of them hav­
ing a "simultaneous Taylor expansion" in every Hepp's 
sector. This leads to a multiple Mellin transform which 
is analytic in a tube, the real part of which is a convex 
polyhedron. The asymptotic behavior is then deter­
mined by an extremal point of the polyhedron. This dis­
cussion is performed in Sec. 2; it is found that, in ¢3 
field theory, although the multiple Mellin transform is 
unavoidable for nondominant amplitudes of G14) (be­
havior in s-P 10gXs, p> 1), the dominant amplitudes 
(behavior in S-l 10gXs) may be treated by a single Mellin 
transform even if the integrand does not have a "simUl­
taneous Taylor expansion" in every Hepp's sector. In 
Sec. 3, we extract for a dominant amplitude of G~4) and 
G~4l the coefficients of the logarithmso In Sec. 4, we 
sum all the logarithms of s for the power S-1 and for 
all dominant amplitudes contributing to G~4) and G~4)' 
Finally in Sec. 5, we give the lowest order contribu­
tion to the Regge trajectory found in Seco 40 

2. ESTIMATION OF THE LEADING POWER IN 
s FOR A GRAPH CONTRIBUTING TO G (~) 

To any graph contributing to G~4), there exists a cor­
responding graph contributing to G~4)' and the estima­
tion in s of the first amplitude is the same as the esti­
mation in u of the second one. Consequently, we restrict 
our discussion to a graph of G~4)' 

The quadratic form [k i (E) dij(a) kj(E)] which enter in 
(10 5) can be written at E = 0 as a sum over the invariants 
s, t, and p~ as 

4 

sAs(a) + tAt(c'I) + L P~Ai (a). (2.1) 
i=1 
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The function A8(0') is the ratio of two polynomials 
Ns(O') over Fc(a) and is homogeneous in all a's of de­
gree 1 since N. (a) is homogeneous in all a's of degree 
[L(G) + 1] and PG(a) of degree L(G). 

We define an s cut as a set of lines (i1, ••• , i p ) such 
that if these lines are cut, the graph G becomes two­
connected with one connected part containing the ex­
ternal legs PI and P2' the other connected part contain­
ing the external legs P3 and P4, and such that no subset 
of (itt • • 0 ,ip) has the same property. An s cut defines 
two- connected subgraphs G [, and G R; any one- tree of 
GL union anyone-tree of GR defines an s-two-tree of 
G. We have 

(2.2a) 

Ns(a) = 6 IT O'.pc (O')Pc (0'). 
[s cuts) r.E s cut) L R 

(2.2b) 

Given a subgraph cP with X~ connected parts and an s 
cut c, this s cut c split cP into two subgraphs cP L and CPR 
with respectively XIPL and X~I< connected parts (some of 
them being eventually reduced to single vertices). From 
the topological relation 

l(cp) +X",=n(cp) +L(cp). 

wbere n(cp) is the number of vertices of cp, it is easy 
to show that when all Q' variables corresponding to lines 
of cp vanish like p, the expression 

Ae(a)= IT a.PCL(O')PCR(O')/PG(O') 
IaEc} 

vanishes like pYe( ~), where 

Ye(CP) =X"'L + X~- X"" 

Consequently, A.(a) vanishes in the same condition 
like pY( "') 

y(cp) == infYe(CP). 
{el 

(2.3) 

(2.4) 

(2.5) 

A subgraph cp is said to be essential if Y (cp) ~ 1 (other­
wise it is a nonessential subgraph). An essential sub­
graph cp is such that the reduced subgraph [G/ cp], where 
cp is shrunk into X", points has an s-independent Feynman 
amplitude. 

Example: We consider the graph of Figo 3: 

PG(O') = (0'1 + 0'3 + 0'5)(0'2 + 0'4 + 0'7) 

+ 0'6(0'1 + 0'2 + 0'3 + 0'4 + 0'5 + ('lI7), 

Ns(a) = 0'10'3(0'2 + 0'4 + as + 0'7) + 0'20'4(0'1 + 0'3 + 0'5 + O's) 

+ 0'10'40'6 + a2a 30'S' 

The s cuts are {13}, {146}, {236}, {24}. The subgraph 
{123} is an essential subgraph with y(cp) == 1; the sub­
graph {567} is nonessential. 

Let us show on this graph the property that [As(a)Jx 
which appear in the Mellin transform of the amplitude 
does not have a "Simultaneous Taylor expansion" in 
every sector. We choose, for instance, the sector 

:: : ,I ' -I ' 'I : :: FIG. 3. 
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O~O!I ~0!2 ~0!3""0!4 ~0!5 ~0!6 ~0!7' 

Because Fc(O!) does have a "simultaneous Taylor 
expansion" in every sector, there exists a largest 
monomial for the above sector which is 0!60!7. On the 
other hand, 0!20!40!6 dominates in the part of Ns(O!) 
which is [a 20!4(O!j + 0!3 + a5 + O!s) + aj0!4a6 + a 2a30!S] and 
O!j0!30!7 dominates in the part O!jO'3(a2 +0!4 +0'6 +0!7)' 

Nevertheless, O'2a40'S and O!ja3(Y7 cannot be compared. 
If we perform the change of the variables (Y into the 
sector variables f3 defined by 

7 7 

O!i== n f3~, dO!i= n f3;2f3 idfl i , 
i=i j:=i+l 

we obtain for [As(a)]x a behavior of the type 

[As(a)]x- (f3~f3~f3~f3tf3~f3~V(f3if3~ + f3Dx. 

The function (f3if3§ + f3~)X does not have a "simultaneous 
Taylor expansion" around f3 i = 0 if x is not a nonnegative 
integer. 

This example clearly demonstrates that there exist 
graphs such that the corresponding As(a) does not have 
the required "simultaneous Taylor expansion" needed 
for the extraction of the residues from the single Mellin 
transform. Among all possible partitions of As(O!) into 
parts which do have the needed Taylor property, the 
most natural partition we can think of is the partition 
into 5 cuts. For each 5 cut, the contribution (2.3) to 
As(a) clearly has the required Taylor property. 

We may now apply the results of ReL 14. There, 
we have proved the following theorem: 

Given a convergent Feynman amplitude I c{ak } in 
Euclidean space, where {ak } is the set of invariants 
(square masses and (I,PY built from the external 
momenta Pi), then, if we scale a subset {am} of the in­
variants by x, Ic[X{a m}, {an}] has an asymptotic expan­
sion for large x, of the type. 

qmax (P) 

I cfX{a",}, {an}] = b xP b 10gqX gpq[{am}, {an}], (2.6) 
p=a .=0 

where p runs over the rational values of a decreasing 
arithmetic progression with [2 as leading power, and 
q, for a given p, runs over a finite number of non­
negative integer values. 

This theorem is proved by using a multiple Mellin 
representation of the convergent Feynman amplitude. 
The extension of this theorem to divergent Feynman 
amplitudes does not present any theoretical difficulties. 
Moreover, the theorem is valid in some cases of 
asymptotic expansion for a Minkowskian Feynman 
amplitude, namely, when the asymptotic expansion 
of the Feynman amplitude is determined by end-point 
singularities (a's-O) as is the case in Euclidean 
space, excluding pinch singularities [only the graphs 
contributing to Gi4) (5, t, u,pL m,g) are susceptible to 
develop pinch singularities]. 

In Appendix A, we generalize the method used in 
Ref. 14 and apply it to determine the large 5 behavior 
of the graphs contributing to G~4) (5, t, pL m, g) taking 
into account the existence of the unique connected 

FIG. 4 
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divergent subgraph of q} (Fig. 4). We note that the 
graphs of Fig. 4 are always disjOint and their union 
is always nonessential. 

Let us now discuss how we determine the leading 
power behaVior [2. First, we remind the reader how it 
works with the single Mellin transform M(x). The func­
tion M(x) is analytic in x in a band [2 <: Rex < [2'; in 
fact, M(x) is found to be a meromorphic function in x 
with multiple poles, the first of which on the left is 
at Rex = [2. The extension of this picture to multiple 
Mellin transform goes as follows: The function 
M(xj, ••• ,xn ) is analytic in a tube the real part of 
which is a convex polyhedron P; then [2 is now obtained 
as 

n 

[2 =inf b Xj' 
P I 

(2.7) 

Of course, this inf is obtained for points on the border 
of P. In practice, the situation is more complicated 
as we can see from Appendix A. We first decompose 
the domain of integration upon the variables O! into 
Hepp's sectors; then, if the graph contains divergences, 
the subtraction operator R is decomposed into contri­
butions which are attached to equivalence classes of 
nested subgraphs (see Ref. 15). Then, for each Hepp's 
sector and for each equivalence class of nested sub­
graphs we obtain a finite sum of terms, each defining 
a convex polyhedron P which determines for that con­
tribution an [2p. The leading behavior [2 is then the 
largest [2 p over all polyhedron P. 

We now state the results of Appendix A. Our intention 
is not to give for the most general graph of </>3 con­
tributing to G~4) a rule to obtain [2; this was done by 
Zavyalov and Stepanov9 using naive power counting 
(although we have no counterexample to this rule at the 
present time, we have not been able to justify it). On 
the other hand, we prove that for any graph of q} 
contributing to G~4) 

(2.8) 

and [2 = - 1, if and only if at least one of the kernel 
N j described in Fig. 2 is a Single rung 'Yj (see Fig. 5). 
Consequently, all graphs contributing to G~4) such that 
no kernels N j is a single rung behaves for large 5 as 
sa log Xs with [2 strictly less that (- 1) and are non­
dominant by a power of 5 in regards to the graphs such 
that at least one kernel Ni is a single rung 'Yj which 
behaves as 5- j logx5. Assuming that summation of 
logarithms for nondominant graphS still gives a non­
dominant contribution with regard to the summation of 
logarithms for dominant graphs, we concentrate in the 
next section on the graphs which have at least one kernel 
N j Equal to a single rung. 

3. ASYMPTOTIC EXPANSION OF FEYNMAN 
AMPLITUDES RELATED TO DOMINANT 
ESSENTIALLY AND CROSSED PLANAR GRAPHS 

We now consider a graph as described in Fig. 2 and 
where each kernel N J represents a subgraphs such that 

N'~ FIG. 5. 
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only s- and t-one-trees may be constructed from it. We 
define I as the nonempty subset of indices j such that 
the kernelsN i , JEI, are single rungs YJ. Then, the 
function As(a) defined in (2.2a) is given by 

A ( ) - TIjEIYjTIptIN./(a)TItPt(a) (3.1) 
s a,Y - PG(a,y) , 

where we associate a variable Yi with the rungs N j , 

j E I. The functions NJ(a) associated with the kernels 
Njo jr/I, can be found by using the expressions (2.3) 
for each s cut c. Each polynomial Pt(a) corresponds 
to a self-energy graph represented by a black dot in 
Fig. 2. Taking into account the subtractions to be per­
formed over the logarithmically divergent subgraphs 
described in Fig. 4, the renormalized Feynman ampli­
tude for the graph C is 

IG(s)=(_g)n (i)-W(C)12 f~ TIdaTIdyexp[-i(.6a +.6y)m 2l 
o 

{
eXP{i[sAs(a, 1') + tAt(a, 1') + L t'l plA j (a, 1') 1}} 

xR p2 ( ) , c a,y 
(3,2) 

where we omit mentioning the fact that 1 c(s) is really 
a limit E - 0 of IMs). The above amplitude is real in the 
Euclidean region. The subtraction operator R in this 
case reduces to 

R= TI(l- T;4)=1 +.6 TI (- T;4), 
~ N ~E,\, 

(3.3) 

where the subgraphs ip are the logarithmically divergent 
subgraphs. In (3.3) We sum over all nests N of diver­
gent subgraphs ip. In Appendix A we prove that limit 
s-aolc(s)-s-llogXs and on the other handlc(s=O) is 
finite *' 0, Consequently, the single Mellin transform 

]v1 c(x) = 10 ~ ds s-HI c(s) (3.4) 

exists and is analytic for - 1 < Rex < O. In this region 
we may interchange the integrals over s and over a 
and y. We may also interchange the integral over sand 
the subtraction operator R because As(Q1, 1') does not 
vanish when all variables Q1 a corresponding to all diver­
gent subgraphs vanish: 

r~ ds s·x- 1R{exp[isA s (a, 1') 0 } .fo 

=R{ ;;~ ds S-x-l exp[isA s (Q1, y)l'}' 
• 0 (3.5) 

If we remember that s in exp[isAs(Q1, 1') 1 has a small 
positive imaginary part, we have 

10 ~ ds S-x-l exp[isAs(Q1, 1') 1 

(3.6) 

where i' is exp(i7Tx/2) and where we insist on the [ + iAsl 
for the homogeneity reason and reality of the (a - 1') 
integrals in the Euclidean region, The Mellin transform 
AI c(x) is found to be 

M c<x) = (- g)"(i)"w(C) /2 r(- x) exp(- i1rx) /~ TI da TIdy 

1499 

Xexp[-i(.0Q1+.0y)m 21 0 

x R {[iAs(Q1, Y)Y exp{i[tAt(a, y) + '[;1,1 piAj(a, Y)]}} 
Pb(a,y) 

(3,7) 
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for -1 <Rex<O. 

Now, we know, from Appendix A, that the subgraphs 
responsible for the multiple poles at x = - 1 are the 
single rungs Yi union any disconnected logarithmically 
divergent subgraphs. We call these subgraphs leading. 
On the other hand, if we define Mc(x) as the right-hand 
side of (3. 7) but where the R operator is defined at 
x =- 1 - 17 with 17 small pOSitive, then Mc(x) is analytic 
for ac < Rex < 0 with ac < - 1 (Appendix B). The fact 
that the subtraction operator is defined at x = - 1 - 17 
is such that not only the logarithmically divergent 
subgraphs, but also the leading subgraphs are sub­
tracted. The R operator in Mclx) may also be written 
as a sum over all nests of divergent and leading sub­
graphs. In the region -1 < Rex < 0, we may compare 
Mc(x) and li1c(x); the difference between the subtraction 
operators R is a sum over all nests, each containing 
at least one leading subgraph. We group together the 
nests which have the same minimal leading subgraph. 
If this minimal leading subgraph L contains a logarith­
mically divergent piece T (itself union of several diver­
gent subgraphs), it is always possible to associate by 
pair the nests of the corresponding group in order to 
form 

(3,8) 

and this is easily proved to be zero. Consequently, in 
the difference between Mc(x) and Mdx), there remain 
only those groups where the minimal leading subgraph 
is a union of single rungs. Given a union J of v(J) single 
rungs of C, we obtain 

.0{[.6 TI (- T;2P(~»1(_ T}V(J»}, (3.9) 
J i'iJ{~ENJ 

~'J 

where N J are all possible nests of leading sub graphs 
with J as minimal element. Now, we note that 

4 

X exp{i[tAt(a, 1') + :0 pi Ai (0',1') ]CN}, 
i.1 

(3.11) 

where the graph C/J is the reduced graph obtained from 
C by shrinking the single rungs of J into v(J) points. 
We observe a complete factorization of the a integrals 
into the single rungs on one part and the reduced graph 
C/J on the other part. Moreover, the sum over all nests 
N J reconstructs the operator R for the graph C/J. We 
define 

AI(c/J](x, t,pi, m,g) 

= (_ g)"-2v(J) (i)"[w(C) /2+v( J)l 

xl ~ !l da TI dYj exp[- i (60! + :2; }) m 2] 
o if/J I'f J 
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(3,12) 

where the operator R subtracts the logarithmically di­
vergent subgraphs and the single rungs of G/ J, The 
function Mcc/JJ(x) is shown in Appendix B to be analytic 
for a~/J <Rex /0 with a'c/J <-1, 2f1cc /J](x) is real in 
the Euclidean region, If we integrate over the variables 
Yj for j E J (with a small positive E), we find that 

Mc(x) = 0 (_ g)2v(J)m-2v (J)(x+l) 
J 

x [r(x + l)]V (J) r(- x) exp(- iITX) 

x Mcc/J)(x,l,pLm,gL (3 0 13) 

Only the term with ,J empty does not contribute to the pole 
at x = - 1. We use now the inverse Mellin transform 
(with a positive E) 

Ic(S)= 2~ITf o+i~ dxs x l1c(x), -1 <(J <0. (3,14) 
a-i OO 

The presence of the functions r makes this integral 
absolutely convergent; if we push the contour towards 
the left beyond x = - 1, we use the Cauchy theorem 
around x = - 1 to obtain Fc" (s) and we neglect a back­
ground integral - so<-1. 

The asymptotic part of the Feynman amplitude corre­
sponding to a dominant essentially planar graph is found 
to be 

(_ g)2v(J) av(J)-1 

J'!!(s) = If (v(J) - Tf! axmr=r 
x{r(- x) exp(- iITX) sx[ r(x + 2) lV(J) 

x 111-2v 
(J) (I+x) M Cc / J](x, t, P7, m, g)}x=-1 , 

where the sum over J now exclude J empty 0 

(3.15) 

Of course, this result shows that I~"(s) - s-1Iogr-ls , 

where r is the total number of single rungs y in G, 

For crossed planar graphs, we exchange sand u, 
P2 and P40 From (10 2) and (1. 6), u - (- s) and the term 
exp(- iITX) is absent, and we get for crossed planar 
graphs 

as _ _ (- g)2v(J) av (J)-1 

Ic (11 - s) - '?f (v(J) _ 1]! ax vU)-l 

1500 

x{r(- x) sx(r(x +2)y(J) m-2v (J)(1+x) 

XM'CC/J)(x, t,pL m,g)}x=_!> 

FIG. 6. 

J. Math. Phys., Vol. 19, No.7, July 1978 

(3.16) 

where Jl' is the function :v after exchanging Pz and P4; 
we note that on the mass shell 111' = M. 

4. INFINITE SUMMATION OF THE LOGARITHMS 
OFs 

In Sec. 3, we found the structure in power of loga­
rithms of s for all essentially and crossed planar 
dominant graphs of G(4)~ Now, we show that the geo­
metrical structure of the coefficients allows us to sum 
I~"(s) over all essentially and crossed planar dominant 
graphs. Of course, the sum over essentially and 
crossed planar graphs are related by the interchange 
s-u, PZ-P4 and, then, we consider only essentially 
planar dominant graphs, 

Let us concentrate on all graphs which have at least 
v rungs. We may represent such a graph G by Fig. 6, 
where the kernels Kj, K 2 , G1, (J2, 0 • , , Gv _1 represent a 
graph one particle irreducible in the ( channel, not 
necessarily connected. If the graph G has r rungs, 
there are, of course, (;;) different ways of representing 
G by Fig. 6; but if we look at (3,15), each of the (~) 

representation corresponds to a different contribution 
to I~S(s). Moreover, the function 2iI cc1 J] factorizes 
into (v(J) +11 functions; we have 

iiJCG1J](x, !,pi, 111 ,g) 

=1;!K
1

(-Y;, t,pLp~, 1J1,,!;) " iiIK2 (X, f,p~,pi, IIl,K) 

v-I 

. n :TIc.(x, t, III ,g). 
i::d t 

In (4.1), we use 

,WK1 (x, l,pj,pt Ill,,!;) 

=(_,!;)n(Kj)i-W(Kj)/2f~ ndO' exp(-i6a111 2 ) 

o 

{ 
(NKj (a)jX {'r ( 2 ( 2 l\} XR PK1(0')x+2 exp I tAt O')+P t At a) +P3 A 3(0') J , 

(4.2) 

where the integral is attached to the vertex graph K 1 

given in Figo 7 and where we do not distinguish any­
more the rungs in K j from the other lines. The func­
tions At(O'), A 1(O'), A 3«(1') are characteristic of the 
graph Kj and NK1 (a) is the product of the variables a 
attached to the rungs of K j , by the product of the func­
tions NJ(a) corresponding to the two particles irreduci­
ble kernels (in the I channell N j of Kj, and by the vari­
ous P t(a) corresponding to self-energies. Similarly 
lVi.K2 is obtained by exchanging Pj and Pz, /)3, and P4. By 
convention, :11 y(-Y;) = 1. 

FIG 0 7. The graph R1• 
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FIG. 8. The graph C;. 

where the functions N G1 , P G;, and At(a) are similar 
to the above equivalent functions but are now attached 
to the two-point graph (;1 given in Fig. 8. 

Any choice of [(10 [(2, G10 G2, • •• , Cv _1 corresponds, 
by Fig. 6, to a dominant essentially planar graph with 
at least v rungs. When we sum the contribution (3.15) 
corresponding to v rungs over all essentially planar 
dominant graphs with at least v rungs, we obtain all 
possible one-particle irreducible graphs in the t chan­
nel for [(10 K 2, C 1, C2, ••• ,Cv-lo We define 

B(x, t, m,g) =:08G 1Vo<.x, t, m,g) (4.4) 
G 

where we sum over all possible graph G with the weight 
eG, 

A13 (x, t,ri,P§, m ,g) = ~ ej(MF(x, t,pLp~, m ,g) (4,5) 
K 

and Similarly A 24 (x, t,pLp~, m,g). We obtain for the 
contribution to the infinite sum corresponding to the 
contraction of v rungs 

1 avo! {[( ) 2 1 v-I 
(v-I)! ,lxv-1 -! r(x+2)m-

2X
B(x,t,m,g)J 

x ~(g)2 r(X+2)r(-x)exp(-i7TX)(~) xA13A24J} • 
~ m m x=-! 

(4.6) 

The functions A 13 , A 24 , and B diverge as well as the 
original perturbation theory. It remains now to sum 
expression (4.6) from v = 1 to infinity, that is, to solve 
the Lagrange problem16 

(4.7) 

This sum is easily performed in the Mellin transform 
space 

f, r(x)~ - g~"() 
vC:O (x+ 1),,+1 - X + 1-f(\:)' (4.8) 

However, we must be careful about the required con­
ditions for interchanging the Cauchy contour around 
(- 1) and the infinite sum over v. We choose for Cauchy 
contour, two straight lines or+iz and 0Il+iz with 
- 2 < 0 II < - 1 <.0 r < 0, and the real integration variable 
z runs from - 00 to + 00. The rest of the contour is at 
z = ± 00 where the functions I f(x) I and Ig(t) I vanish due 
to the functions r(x + 2) and r(- x) (and E"> 0 when 
needed)" Now, the interchange of the Cauchy contour 
and the infinite sum over v is allowed if I f(X)/ (x + 1) I 
< 1 along the contour. It must be said at this point that 
since the function B(x, t, m ,g) which enters the function 
f(t) is defined by a divergent series, little can be said 
about the validity of the interchange. We prove in Sec. 
5, at the lowest order approximation (see Fig. 10), 
that there exist two intervals, one where 01I and one 
where a r may be chosen such that I fro) I < I a + 11 and 

1501 J. Math. Phys., Vol. 19, No.7, July 1978 

a fortiori I f(x) I < Ix + 11. If we can give a sense to 
the infinite series which define f''() and if we prove 
that I f(x) I r Ix + 11 along the Cauchy contour, then a 
theorem by Lagrange16 states that the equation 

f(x) =X + 1 

has one root Xo and only one inside the Cauchy contouL 

In this case we obtain 

~ 1 a" J v g(x o} 
6 ~ ;,,," Lf (x)g(xlrx=_1 = 1 _ ('(\ ) (4.10) 
v=o ". c, .. "0 

Given the function xo(i, III ,g) solution of the equation 

(iL) 2 r(t + 2) m-2x B(x, f, lJI,g) =x + 1, (4.11) 
111 

the large s behavior for all essentially planar graphs 
is 

(~) 2 A!3(xo,t,pLm,g)A21(-,o,t,pLIJI,g)(~) Xo 

Xexp(- i7TXo) 7T(1 + -'0) 
sin7T(l +xo) 

x {1- a!o [(~) 2 r(to+2)1JI-2XOB('(o,t,lI1,g)]}-I. 

(4.12) 

We note that on the mass shell 11 10 is equal to A 24• 

In the same manner, the large s behavior for all 
crossed planar graph is obtained from (4.12) by omitting 
the term exp(-i7Txo). The large s behavior for all es­
sentially and crossed planar graphs is 

(~1) 2A!3(xO,t,J)LJII,g)A24(\O,f'I)~,J/I,g)(~) xo 

x[l +e (- i7[x)l 7[(1 +xo) 
xp 0 sin7[(l + co) 

X{l- _0_ [(g) 2 
rCto +2)JII-2xOR(\rl fIJI cr)]}-1 

(Lto 117 " ,.'-) 

5. LOWEST ORDER CONTRIBUTION TO THE REGGE 
TRAJECTORY (SEE REF. 6) 

We wish to explore Eqo (4,11) which gives the trajec­
tory xo(t, m,g), in the lowest order approximation for 
the function B(x, t, III ,g), that is, the contribution of the 
graph of Fig. 90 

This approximation is certainly valid for small 
coupling constant J{. Using the weight Eic equal to 1/2 
and (4,3), (4,4), we get the equation 

To explore this equation, let us first solve two of its 
approximations: the small t dependence and the small 
J{ dependence. 

Q FIG. 9. 
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A. The small t dependence 

We write the solution 

xo(t, 111 ,g) =A (m,g) + tB(m,g) +O(t2), 

where A (111, g) is the intercept and 8 (m, g) the slope 
of the trajectory. An expansion of (501) around I equal 
to zero gives 

A (111 ,g) = - 1 + .! arcsin (27Tg~) , 
7T /)/ 

8(111 if)= '" 1- - &... 
-A(m o-)g2 [ 7T (fY) 4] -1/2 

,.'> 12//1 4 4 m 

Equation (5.3) shows that this solution has a meaning 
only for Ig I ~ mv2!Ti, and when Iff I runs from 0 to 
mV2{Ti, the intercept goes from - 1 to - 1/2. The slope 
/3(m,g) for this range of g goes from 0 to + "'. The 
value Ig I = m f2!ii is the limiting value for the Lagrange 
problem to have a solution, as is illustrated in Fig. 10 
in the simple case 1==0. 

The equation f(x) equal to ~'( + 1) has two roots 
Y2=A(m,ff) and Y3 symmetrical in regards to - ~ and 
the equation I f~) 1= iX + 11 has four roots, Y 2, 1"3, 1'0, 

and 1'1 symmetrical of 1'2 and 1'3 with regard to (- 1). 
Consequently, the choice of 0 1 and all which justify 
(4010) is given by 1'2' 0 1 <: l' 3 and Yo < a II <: 1'1' At g 
equal to mV2{Ti, 1'2 and 1'3 (resp. Yo and 1'1) coincide 
at x = - l (resp. -t). 

Of course, for g equal to 111 v'2li, the only contribution 
of Fig. 9 is not valid any more, and more graphs should 
be computed, 

B. The small g dependence (see also Ref. 3) 

We write the solution 

x 0 (t, III, g) = - 1 + a (t , m) g2 + 0 (g4) 

and 

( 1 J' 1 [2 ( )1-1 at ,111)=2 0 da 111 - fa 1- a , 

that is, 

2 -1/2 {(4m2- 1)1/2+ (- t)1/2} 
a(t,m)=[t(f-4m)! log (4m2_t)I12_(_~ 

for t '" 0, 

a (1,111) = 2[ f (4m 2 - t) t 1/2 arctan[t1/2 (4m 2 
- tr1/21 

(5 0 5) 

(5 0 6) 

for 0'" t '" 4m 2
0 (507b) 

This approximation is valid for g and t small 

f (x) 

FIG. 10. 
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[(xo + 1) small1 and is certainly bad when t is close to 
4m2 since for any values of t, m, andg*O and, for 
the graph of Figo 9, xo(t, m,g) < 00 

C. Tabulation of the integral (5.1) 

A complete study of the hypergeometric function 
defined by the integral (5.1) gives for Regge trajec­
tories, the curves of Fig. 11 (see also Ref. 3). Again, 
the part of the curves where the slope becomes large 
should not be taken seriously and higher order contri­
butions should be taken into account. At g = 0, the 
trajectory becomes xo=-1 V t *- 4m 2 and - 1 "xo~' 0 for 
t=4m2, For t>4m2, the trajectories are complexo 

We also mention the intersection of the trajectories 
with xo(t, m,g) equal to - 1/2; we get the following rela­
tion between g/m and t/m2

: 

7T 2 (l) 1/2 :-!fmt arg sinh -..::::-:z-;4 t = 1 , m m-

for g/ m '" f2!ir and consequently 0'" t <: 4m2
• 

D. Comments on the complete series which define 
the Regge trajectories 

(5.8) 

First, we ins ist again on the fact that B (X, t, 111 ,g) 
which enters, equation (4.11) is a divergent series and 
that anything which may be said here is applicable to a 
calculation up to a finite order. The left-hand side of 
Eq. (4. 11) is positive or null so that Xo (t, 111, g)? - 1. 
As mentioned at the end of Appendix B, and as may be 
seen directly on the series B(x, t, m,g), the graph of 
Fig. 9 becomes infinite at x =0. For a similar reason 

- 1 ·~.xo(l, lJI,g) <0 

whatever the finite number of terms computed in 
B(x, t, m ,g) is, In fact, it may be wrong to interpret 
this as an absence of bounds states, First, we have 
seen in the low order approximation that the summation 
technique breaks down at a certain negative xoaxCdm) 
and nothing can be said aboveo A similar situation 
should be true also if we compute more terms of Be 
Also, we show in Appendix B that the poles of [2G c (x)/ 
r(- x) 1 and of }G G!.r 0.:) were spurious and did not occur 
originally in [MG(x)/r(-x)t Because of the presence of 

Xo (t) 

-0.25 
, 

\ 

-~\"6 ----_4\---~_2,.--------i-----t-2 --:-t/-:::m+---!4-

FIC. 110 
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VG(x) in the background terms, it may happen that this 
background at x = 0 is comparable to the leading 
asymptotic behavior. This undesirable situation should 
be then a consequence of our desingularization tech­
nique, but at the present time it is the only technique 
we know which allows infinite summation as in Sec. 4. 
On the other hand, we may remind our assumption 
which says that what is negligible by a power of s in 
perturbation remains negligible; the summation of all 
logarithms of the power S-I does not prevail upon the 
power SO (which has no sum of logarithms), We shall 
leave open this problem. 

Let us finally mention that the limit t - - co of 
B(x, t, III ,g) is zero for x <0 and this implies 

lim xo(t,1I1,g)=-1 (5, 10) 

This is so because the leading contribution to 
B (X, t, 11/, g) when t - - co comes from the graph of 
Fig. 9 which behaves as tX when xc> - 1 and as t -I log I t I 
whenx=-l, 

6. CONCLUSIONS 

We first remind to the reader the validity of the re­
sult given in (4,13) and which partially describes the 
large s behavior at fixed l of the scattering amplitude 
in 1>3 field theory, The class of graphs which is con­
sidered in this paper does not include the graphs which 
are susceptible to generate Regge cuts; these graphs 
might in addition develop a Regge pole contribution 
which is expected to complete our result by nonplanar 
corrections, We consider all graphs which generate 
only a Regge pole behavior and, among these, we char­
acterize a class of dominant graphs (- s-1 log"s). We 
neglect the contribution of nondominant graphs and of 
the nonleading power of s for the dominant graphs be­
cause it is negligible graph by graph by a power of s, 
and we assume that, when summing over all graphs, 
the infinite sum of logarithms of s does not destroy 
this dominance (as it is also assumed for the scaling 
properties when we neglect the right-hand side of 
Callan-Symanzik equation), The technique of summa­
tion used in Sec, 4 is based on a theorem by Lagrange 
and is justified if there exists an interval between (- 1) 
and 0 where Eq, (4,11) has one root and only one; we 
have shown in Sec, 5 that such a root exists somewhere 
between - 1 and 0 at the lowest order approximation, 
and we assume its existence for higher orders, 

The Regge pole behavior obtained in (4,13) possesses 
the following characteristics; 

-The Regge traj ectory X o (t, 111 ,g) is found to be the 
solution of an equation which contains an infinite series 
of Feynman-like contributions, The root xo(t, m ,g) is 
? - 1 and at the lowest order approximation increases 
with 1 up to a certain negative x~""(g/1I1) where the 
procedure of computation breaks down, For a small 
value of the coupling constant g (g« m v'27iT) the inter­
cept of the Regge traj ectory is found to be (- 1 + g 2/2m 2) 
and the slopeg 2/12m 4, For t-- co, xo--1, and for 
t -;, 4m2 the traj ectory is complex. 

- The signature is positive because of the symmetry 
s - It of the system. 
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-The residue factorizes into two vertex functions which 
are also infinite series of Feynman-like contributions, 
These functions are themselves dependent of xo(t, m,g). 

-The pole structure appear under the form 

.17%0 )[1--0° {~r(xo+2)m-2"oB(xo,t,m,g)}J-1 SlU1T1+xo Xo m 

(6.1) 

This form is infinite for Xo = 0, 1,2, ... and remains 
finite for Xo = - 1 as well as for X o = - 2, - 3, ..• because 
of the "ghost killing factor" in the square bracket [ 1 
[however, we have shown thatxoU,m,g)?-l], The 
square bracket [ ] in (6,1) does not vanish in the lowest 
order apprOXimation as long as Xo <xQ'ax(g/m) where 
the summation procedure breaks down. We expect a 
similar property to hold at higher orders. 

-The large s behavior obtained in the paper is 

~ 'i 1 (. 0 ( 1+XQ(I'II~) U('<4)(S)=C(4)t,1II,g)S + . [1+ (I . )] 
i.1 Sln11 X o , JJl ,g 

x (3(£, pL In ,g){1 + exp[ - i1TXo (t, 111 ,g)]} 

( 
s) xoCt, m,e) 

X-:::1 +"', 
IJ1 

(6,2) 

By the optical theorem, the total cross section U tot (s) 
is given as 

Using the fact that the constant contribution 
ct4)(t,m,g) (Sec, 1) is real at f=O, our result, neglect­
ing Regge cuts, gives 

Utot(s) _s"o<l=O>-1 (6.4) 

with an intercept which satisfies 

We, of course, should not try to use the numerical 
values obtained here to describe any physical situation 
since the main point of this paper is in fact to prove 
that, in 1>3 field theory, Regge trajectories can be con­
structed, It is clear that 1>3 is not a relevant field 
theory for describing hadron physics, For instance, 
an intercept in 1>3 around (- 1) is mainly due to the 
s-1 behavior of the dominant graphs, In rb 4 field theory, 
all graphs behave as sO up to logarithms of s, and we 
expect a higher intercept; moreover, 1>4 is a strictly 
renormalizable field theory, and we know that the re­
normalization group plays an important role in the 
large s behavioL 17 Also, it may be useful to investi­
gate the action of group symmetries on the trajectories 
and, for instance, already, in 1>2rp, we observe some 
splitting of the trajectories, These Lagrangians have to 
be understood as constructive tests before attacking 
the description of hadron physics from gauge field 
theories, 
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APPENDIX A: BEHAVIOR OF IG (s) WHEN s""* 00 FOR 
AN ESSENTIALLY PLANAR GRAPH 

A method to obtain bounds on a Feynman amplitude 
when some invariants become large is exposed in Refs, 
11, 14. In Minkowski space Ic(s) is defined as the limit 
E - 0 of I ~ given in (1,5). Let us remind the reader of 
the main steps which transform Ic(s) into a sum of 
expressions upon which bounds can be obtained, 

A. Sector decomposition 

First we decompose the ()' integration domain into 
Hepp's sectors. Each sector is defined by an ordering 
of the l variables 0'., The union of the II sectors is 
the original a-integration domain, Given a sector 
_) = {o Cc (Y'1 ~ 0"2 ~ ••• 'S aal~' we perform the change of 
variables 

with 0 < PI" 00 and 0 oS' f3in " 1, 

dO' •. = 2f3;&;+1'" f3idp; 0 , 

It is convenient to define the subgraphs R, 

(Ala) 

(Alb) 

={al' a
2

, • •• , ai } so that all variables 0< which are at­
tached to Ri are dilated by P~ in the above change of 
variables. 

Then, it is well known that, in the above change of 
variables, the Jacobian of the transformation is 
21ntl fl~l (R; )-1, 

I I o 0'. - 6 fl~ •.. fli (A2) 
a::: 1 i:d 

and 

(A3) 

with Q(f3) ~ 0 when f3? 0 and (3, independent. 

We now transform the quadratic form [sAs(O') + lAt(O') 
+L:i.JPiA;((]I)l into 

s t n fl2~c(Ri) [1 + flc((3)J + &r{(t p2 f3) (A4) 
c,,\ ;:\ i 1 + Q({:l) ',i1' 

In (A4), we sum in the coefficient of s over all s cuts 
c; }'c(R j ) is defined in (2.4); Dc((3)?c 0 when (3?c 0, and 
the functions 00 (f3) and {(t, pi, (3) are f3 1 independent, ill 
the expression [1 + D 0((3) 1 the presence of 1 is due to 
the fact that for each s cut c, the corresponding contri­
bution to As(O') has a simultaneous Taylor series 
expansion, 

B. The R operator and the absolute convergence 

Next, we must tell what the renormalization operator 
R becomes and how it acts. The R operator acts upon 
a variables of each subgraph and does not recognize the 
subgraphs (except for the subgraphs R i ) when the inte­
grand is expressed in the (3 variables, Consequently, 
before performing the change of variables (AI), we 
must introduce new variables which allow the general­
ized Taylor operators T. to recognize its subgraph cp 
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when the change of variable 0' - (3 is performed. The 
R operator is expressed as a sum over all nests N, of 
products of T operators. If we consider only one nest 
N, the corresponding (3 integrals diverge, but we know15 

how to construct for each sector 5, equivalent classes 
of nests r, such that for the sum over all nests in r, 
the corresponding (3 integrals converge. We now re­
sume here the main features of this construction. 

(i) Each equivalent class r is characterized by its 
maximal nest C; and its minimal nest K <:;; C;, 

(ii) Every nest IV such that K r:;, N <:;; C; belongs to r, 
each nest belongs only to one equivalent class r and the 
sum over all equivalent classes reconstruct the sum 
over all nests. 

(iii) The subgraphs of any nest N which belong to r 
can be partitioned into the subgraphs of K and some 
subgraphs of fI = C; - K, Consequently, 

n (- T;2I<w») = n (- T ;2I(W») n 
wE,\ wEx wEt: 

(A5) 

At this point we consider a given sector 5 and a given 
equivalent class of nests r, 

In the construction of K and fI, 15 we define from the 
subgraphs R{ the subnests K{ and fli for i = 1, •• , ,1 such 
that U K/ = K and U Hi = fI, and we label the subgraphs of 
Ki and Hi by K; and H~ for j = 1"", rj - I, Moreover, 
K~c H}c 10+1 C • ", and 

H~ = K}+1 n (Ri U Kn (A6a) 

Ti-1 

6 [l(H})-l(K~)]=l(Ri) fori=l,oo.,l. (A6b) 
f,;1 

Let us remind to the reader that Hi is never empty, 

We now define the new variables upon which the T 
operators act. Given a line a E: K~ we dilate the variable 
a. - a.(a~)2, and given a line a E~, we dilate 
0'. - O'a(X~)2o Then, we perform the change of variables 
(AI), 

Theorem~ We denote by (Sr) the transformation of a 
function Z (aa) into a function Z5 r ({3., aL x~), Then, the 
function2'5 r is of the form Z5 r(aV{:li'i3jX~)' 

The proof is given in Ret 15. 

Consequently in the (S r) transformation, 

( 
;) 2L(Ki ) 

Pc(a)wrl. K}~X r. J H}~II (X~(31)2L(H}) 

x [1 + Q(a/{3, (3X)] (A7) 

and the quadratic form [sAs(Q) + fAt (0') + L: L p~ Ai (a) 1 
becomes 

A (s, t,pi, t ,f3x) 

(A8) 
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where Dc and [ are i3 ,X\ independent and where we use 
the fact that K' contains only the empty subgraph cp and 
H'={G}; by bomogeneity we have Yc(H\= G)=l 'fI c, 

i 
We now apply the operators T;lI<KJ) corresponding to 

subgraphs of K by following the thles given in Ret 12. 
Vk get a sum of terms of the form 

(A9) 

with ° ~ aj ~ w (K~) provided that all K; E: K are divergent 
subgraphs, otherwise we get zero, In (A9) 

i 

[ 
1 aaJ 

A (a~) (i3x) = PI< ~ a (a l li3 )a{ 
K JE: j j I J 

X{ eXP[iA (S,t,Pi. a/i3,i3X)J}J (A10) 
[l+Q(ali3,i3x)F 01.0' 

J 

It is important to note that A(a!) (i3X) has a Taylor 
J 

expansion in the variables i3x around i3x = 0, Using the 
integral representation for the rest of the Taylor series 
relative to the elements of H, we finally transform 
(A9) into 

XA(a}) (i3x) l{xJ.I. 
t W <H}}< 0 

(All) 

with 
r; -1 

P;='6 [4L(I0)-4L(Rj)-a~1+ ~ [w(H~)+lL 
i.l H} div 

(A12) 

It is easy to prove that 

21 (F,) +Pi?- 4 [- w(Rj)] + '6 (1» 0, 

{:~~}<o {:~H:}~O 
(A13) 

Thus, we have proved that for a given sector 5 and 
for a given equivalence class r, we obtain a sum of 
terms, each of which is of the form 

I 

Xexp(- i '6 i3~'" i3im 2
) 

'.1 

f 1 [(1- i)W(H~) 
X n dX i ~ 

o {H~E: H i W {~)! 
W (H}) .. O 

( 
0 ) W(H~)+IJ 

o (X~i3i) 

X A (a;) (i3X) I xj.l (A14) 

W(H~ )<0. 

This achieves the proof of Bogoliubov and Parasiuk 
theorem which states the absolute convergence of the 
renormalized Feynman amplitudes o The expression 
(A14) is also the starting point if we wish to obtain a 
bound of Ic(s) for large s, 
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C. The behavior of I G (s) for large s 

We describe now a generalization of the result given 
in Ref. 14 to the case where G contains only logarithmi­
cally divergent subgraphs. Here, the numbers a} in 
(A10) are all null, and we calculate 

n _0_ {exP[iA (S,t,Pi,o,i3xJ} (A15) 
H} div a(i3iX~) [1 + Q(O, i3x)F • 

Because the logarithmically divergent subgraphs 1\.; 
are nonessential, A (s, t, pi, 0, i3X) is s dependent, but 
the sum over the s cuts c in (A8) is reduced to a sum 
over those cuts c' which do not intersect the largest 

j 
subgraph Kjo 

The expression (A15) is a sum of terms of the form 

x cp (i3X) exp[iA (s, t, p~, 0, i3X) J, (A16) 

where Pc' and n are nonnegative integers, cf> U\) is (~, 
independent and has a simultaneous Taylor expansion 
in i3x around zero, and where the nonnegative integers 
v(H~) are null if HJ is a convergent subgraph and are 
smaller or equal to inf[l, 2L; c'Pc'Yc' (H})J if H~ is a diver­
gent subgrapho In (A16) we have 

A ( 2 - ",' i 2,c' (Ht -I) [1 + D~J 
s,t,Pj,O,i3x)-s?, 21 (i3 i X.-;-l) I 1 +(2(0,f:Jx) 

+ (13, X\)2 [(t,pL 0, i3x), (A17) 

where, of course, because of the property K; __ H~ 
C K~+I C •• " we have only one possible variable Xt'-1 

in front of the square bracket [Jo We now integrat~ 
over the variable 13,; using P, + 27 = - w (G) 0, we get 

r(y) sf-c'pc'! 1 n [dl\i3~i+Pi"ll n dx~ 
o it! H} dh 

1-1 2f- (Hi) ( i 
X n (r:!. I ) c,Pe,Ye ' ri-I -v H,.._l) 

I-',X ... -l ' 
i=r1 ' 

I-I 
Xcp(i3x)[imi +i'6 ~"'i3i-lmL-iA(s,{,pLO,i3x)/fjil-Y, 

I j.l 

(AlB) 

where 

y=n+'6 Pc.-w(G)/2, 
c' 

(A19) 

and where all variables x} are set equal to one for con­
vergent subgraphs Rjo We must note that with the defini­
tion (1,5) of a Feynman amplitude, the masses /11

2 have 
a small negative imaginary part and the invariant 
s, t, pi a small positive imaginary part, so that at 
E"> ° the square bracket [ J in (A18) has a positive real 
part, At this step, we may use the following integral 
representation: 

r(y)('6 Ac' +B)"'=n {~ f·c'+i~ dZc'} n r(- ze' +fJ .) 
c' c t lTT pc,-i oo c' C 

(A20) 

M.C. Berghe and C. Gilain 1505 



                                                                                                                                    

for Ref'> 0, ReAc' > 0, ReB> ° and with ReZc' =Pc' <Pc" 
and "fc'Pc' '- w(G)/2 - n. For ~ > 0, the above integral 
representation can be introduced in (Al8) and the inte­
grals over zc' and over the variables f3 and X may be 
interchanged in a region of Pc' to be defined later ono 
For each term (Al8), we define the multiple Mellin 
transform M(zc') by using (A20). We get 

{ 

p •• i~ } 1 c r .z • 
f} -. r dzc' sec M(zc'), 
c 2IrrJpc'-i~ 

(A21) 

with M(zc') given by 

A1(zc') = n r(- z • +P .)r(6 z . +n _ W(G)) 
c' c c c' c 2 

It is clear that the multiple Mellin transform does have 
a simultaneous Taylor series expansion around f3 i and 
X~ equal to zero, and, consequently, we may explore 
from (A22) the region of analyticity of ,H(zc')' The in­
tegrals in X; .-1 converge if , 

The integrals in f3; converge if 

26p'V.(if 1)'-(2i+p.) i*L c' c. C Y i - t. , 
(A24) 

We note that (A24) is really a condition for H:._1 

convergent since it is automatically satisfied by' (A23) , 
the values of v(F,.._l) and (A13) for IP,. -1 divergent. For 
each term (Al8) the inequalities (A23L (A24) Pc' <' Pc' 
and L.Pc ' > [w (G)/2 - n 1 define a convex polyhedron in­
side which any point with coordinates Pc" may be used 
to calculate the integrals (A22). The fact that such a 
polyhedron is nonempty justify the interchange of the 
f3, X, and z integrals. 

To find the large s behavior of a term of the type 
(Al8) we must find the minimum ("f c' Pc') over all points 
of the polyhedron. If .6- is such a minimum, then a term 
of the type (A18) behaves for ~ > ° 14 as sf> up to loga­
rithms of So We do not prove here that this result re­
mains valid for E - ° provided that the integrals (A22) 
exist It remains to compare the different values of .6-
obtained for the different terms of the type (Al8), that 
is for the different values of n, Pc', V(F,..-I) and for the , 

c' 

NJ --ct=>-- N2 
I 

FIG. 12. 
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different sectors and equivalent classes of nestso This 
is a difficult task for the most general graph which 
contributes to G14), and at the present time we have not 
been able to justify (although we have no counter­
example) the general rule given in Ret 90 AnyhOW, 
if 

S1= sup{.6-}, 

then 

D. Proof that n .;;;; - 1; graphs for n = - 1 

The remaining part of this appendix proves that 

(A25) 

(A26) 

S1 '" - 1 and determines the graphs such that S1= - L 

We consider a connected subgraph <p of G with n(<p) 
vertices and N(<p) external legs and an s cut c of G 
which splits <p into X connected parts. Of course, n(<p) 
;, Xi moreover, N(<p);, X because if there exists one 
connected part without an external leg of <p, then the 
s cut of G split G into more than two connected parts 
(with PI and P2 on one side, Ps and P4 on the other side) 
and c is not an s cut of G. Consequently, 

n(<p) + N(<p);' 2X. (A27) 

Let us characterize the graphs satisfying the equality 
in (A27). From n(<p)=N(<p)=X, we get l(<p)=X and then 
the number of independent loops is L(<p) = 10 If we call 
lc(<p) the number of lines of <p cut by c and Lc(<p) the 
number of independent loops of <p destroyed by c, using 

(A28) 

we see that either Lc(<p) = 1 and all lines of <p are de­
stroyed by c (examples of such graphs are given in 
Figs. I2a, l2b) or Lc(<p) =0 and all lines of <p but one 
are destroyed by Co In this last case, since we have one 
loop and one line only which are not destroyed by c, 
we must have a subgraph <p with tadpole as shown in 
Fig. 13. 

We note that the subgraphs of Fig. 13 does not occur 
in G and the subgraphs of Fig. 12a-12b occur only in­
side self- energy parts or 3- external legs vertices i 
otherwise, G is not essentially planar. Because [n(<p) 
+ N(<p)l is equal to [4 - w(<p)] which is even, we just 
proved that except for the subgraphs of Fig. 12a-12b, 
for all connected subgraphs <p of G, we have 

n(<p) + N(<p)? 2X + 2, 

that is, 

w(<p)/2yc(<p) $-- L 

For disconnected subgraphs <p= Ui<Pi, since 

w(<p) =6 w(<Pi), 
I 

FIG. 13. 
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(A3Ia) 

(A31b) 
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J 
"I 

c'! ' c 

we have 

w(cp)/2y~(cp) ,,; S~p[W(<p;)/2y.(cpi)J ~ - 1 , 

FIG. 14. 

(A32a) 

provided that any connected part <Pi differs from a graph 
of the type given in Fig. 12 {since w{ep;) < 0, 
[W(<Pl)/Yc(ept)] is - 00 for yc(epj) =0]. For a given nest 
N, we call "bad cuts," those cuts (if any) which inter­
sect a subgraph ep EN in a way desc ribed in Fig. 12. 
For any "good cuts," (A32a) is valid. Since the graphs 
of Fig. 12 cannot be essential, for any subgraph we 
have 

w(cp)/2y(cp) <--1. (A32b) 

With any subgraph T of the type given in Fig. 12, 
we associate a line t which is one of the external leg 
to the self energy which contains T or the external leg 
to the three- external legs vertex which contains T and 
on the same side of the s cut c (see Fig. 14). 

Of course, c' is an s cut as well as c, and t does not 
belong to a graph of the type given in Fig. 13 for the 
cut C'. Given a nest of subgraphs, it is always possible 
to find a good cut c' which avoids the situation of 
Fig. 12 for any subgraph of the nest. 

We consider a polyhedron defined by (A23), (A24), 

Pc' <Pc, and L.'pc" [w{G)/2 - nJ. Such a polyhedron is 
related to the large s behavior of a term of the form 
(A18). When n varies, we obtain nested polyhedrons 
Por:;;;p1 r::. "'CPnC'" and consequently A(n=O) 
::>. A(n = 1)? ...• Since we look for the sup{A}, we keep 
in mind M!l = ot Similarly, in (A23) when the quanti­
ties /J(~!_I) vary, we obtain nested polyhedrons p{v} 

with fJ{O}:"';) P{vmul where 

/Jmax(~._I) = inf[l, 2 E Pc'Yc' (H~ -1) J. (A33) 
, c' I 

Consequently, the largest A is obtained for A(n = O. 
{v}={vrn3Jt

}). The same kind of arguments does not apply 
to the variations of Pc', because vmax is Pc' dependent 
and the various polyhedrons obtained, when P.'. vary 
are not nested [the inf condition in (A33) prevents 
the polyhedrons to be empty 1. 

We define 

A' =inf {sup (~)} 
c' w 2,1'.' ('17) , 

(A34) 

where inf is taken over all "good cuts" c ' and sup runs 
over all graphs of the nest such that y c' (ep) > 0, and over 
G. In (A34), a(cp) stands for -(2i +Pi) corresponding to 
the subgraph ep ~ H~.+ We note that 

t 

A' <-1 (A35) 

since we have 

A {sup~} 
"'. G 21'0' (cp) 

for any "good cut" c'o From (A1S) we see that 
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then, 

.-!!JJ!L .s -1 V cP (ye,(ep) > 0), 
2y c' (ep) 

and this proves (A35). Now, 

A(n=O, {v}={vm..,,}).:s /J.'. 

Proof of (A38): W:J consider a "good cut" c and a 
graph <p such that 

A' =: 0' (rP)/2y;;{rP) = sup{O' (rp)/2yc(cp)}. 
~ 

Now, we consider the pOint P 

1
cpc'=- 712 if Pc'=O and c'clc, 

P rpc'= +71 if Pc'> 0 and c' clC, 

,CPc= A' + 71, 

(A36) 

(A37) 

(A38) 

(A39) 

(A40) 

where 71 is positive and small (172 « 7/). Clearly Pc' 'Pc' 
since A' < 0, Moreover, (A23), (A24) are valid since 
A'? 0'(cp)/2yc(cp) for any '17 such that Yc(cp) *0; for those 
graphs H:._1 which are not cut by C, the left-hand side 
of (A2S), '(A24) is strictly positive if at least one Pc' is 
positive (and if that c' cut H:i-tl while the right-hand 
side is negative or null (if all Pc' are null for the cuts 
c' which intersect H;/_t. the left-hand side is negative 
as close as we wish from zero and the right- hand side 
is less or equal to - 1). Consequently. P belongs to the 
polyhedron p(vrnax), On the other hand, CZ.'Pc') is as 
close as wanted from the diagonal hyperplane [Zc'Pc' 
= A']. This hyperplane crosses the polyhedron p{v"'u) 

or is tangent to it, and this proves (A38), 

Since Q is the sup over all possible A and since we 
have (A3S) and (A35), this proves that Q.:s -1" 

Finally, we determine the conditions for n to be - 1, 
The expressions in (A3S) and in (A35) must become 
strict equalities. (A3S) is an equality if the hyperplane 
[(2: c'Pc') = A'l is really tangent to the polyhedron 
p(v"'u)a Let 1] in the coordinates of P becomes 0; then, 
the pOint P belongs to the boundary of the polyhedron 
defined by the edges 

(A41) 

for the divergent subgraphs H;'_l such that there exists 
c' with Pc'>O and Yc' (H~._l):' 0, t , 

(A42) 

for the convergent subgraphs ~.-1 such that 2Yc(H:._1) 
-::=. (2i +p/), t , 

- Pc' =: 0 (A43) 

for those cuts c'ifoc such that Pc' =0, We suppose that 
the graph G is such that w{G) <- 2 since the case wiG) 
= - 2 is triviaL The condition for the graphs ~'-1 in 
~~~~h~ t 

1 _ 2i + Pi - w{Ht(-i) . 
- 2YC(IP,.i-1) ~ 2YC(~i-l)"? 1, (A44) 

so that (2i + Pj) = - w (IP,..-l) which is the case for instance 
t 
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I C 

N~ FIG. 15. 

if I<i is empty and if Fr
i

_1 =Ri, Moreover, these graphs 
should satisfy 2yc = - w. The other "good cuts" c' should 
be suc h that y c' ~ Yc because of (A32a). A property of 
convex polyhedrons 14 is that if the diagonal hyperplane 
is tangent to the polyhedron in P, it may be generated 
by linear combinations of (A41)- (A43) with nonnegative 
coefficients. It is clear that this is only possible if all 
Ye' =.1'0 for all good cuts c' which intersect the conver­
gent subgraphs of (A42). 

We now prove that a graph <p, such that 

ye,(<p)=vc(<p)*O (A45) 

for all "good cuts" c' relative to a nest AI which contains 
<P, and such that 

(A46) 

is the union of Single rungs (Fig. 5) and of logarithmi­
cally divergent subgraphs. 

First, since c is a "good cut," for each connected 
part <Pi of <p, we must have 

(A47) 

otherwise, (A46) is not possible. Now the connected 
graphs which satisfy (A47), also satisfy 

n(<p;)+N(<p/)=2x+2 (A48) 

where n(<Pi), N(<p/), and X are the number of vertices, 
external legs of <PI and the number of connected parts 
obtained after intersection of C. Using again the inequal­
ities n(<Pi)? X, N(<Pi)? X, we see that most connected 
parts should have only one external leg (Fig, 15), But 
if c is a good cut, clearly c' is also a good cut; we 
have Ye• < y~ since c' cut <Pi into (X - 1) connected 
parts and, consequently, by (A45), one external leg 
connected parts are not allowed. We are left with the 
only other possibility: There are two external legs 
for each connected part (N(<p) = 2X). Then by (A48), 
17 (<Pi) = 2 and we obtain a Single line. The only single 
line which satisfies (A45) is an essential single rung as 
shown in Fig. 5, Consequently, <p is a union of single 
rungs, and of divergent subgraphs since these divergent 
pieces are not cut by the "good cuts" and do not destroy 
(A46); such graphs <P are called leading. We proved in 
the same time that if, for a convergent nonleading sub­
graph 2: and for a "good cut" c, we have w(D=- 2ycO;), 
then there exists a "good cut" c' such that yc·(L:) <yc(2:). 
For the leading subgraphs <p, we have for the "bad cuts" 
c", Ye" '> Yo, and in the system (A42), (A43), we need 
Eq, (A43) for c'=c" (Pe,,=O) in order to generate the 
tangent diagonal hyperplane in P; (A41) is then useless. 

We just proved that, for those graphs which contain 
at least one single rung (Fig, 5) as essential subgraph, 
we have 11=- L 

APPENDIX B 
A. The single Metlin transform M G (x) 

The single Mellin transform is defined in (3.7). The 
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operators T which enter in R are sensible to divergent 
subgraphs [by Pc(a,y)] and to essential subgraphs [by 
A.(a,y)J. For an essential subgraph <p, we have a sub­
traction only if 

(Bl) 

with E' (a) defined as the smaller integer larger or equal 
to Rea, and where x is taken between - 1 and O. 

By (A32b), the ratio (w (<p)/2y (<p)] is always smaller 
or equal to (-1). Consequently, for Rex larger than 
(- 1), no essential subgraphs are subtracted. The same 
analysis as the one performed in Appendix A for the 
Feynman amplitude Ic(s) can be written for ,'Hc(x) with 
exp(isA.(a,y)l replaced by [As(a,y)l". We just mention 
here the technical differences, Since all subgraphs K; 
are nonessential, only the subgraphs 1P,.,-1 might be es­
sential because of the nested and altern~nce properties 
of the K's and of the H'so Then, we have 

. [ (i)Z'(K;) A ({3 i 'i{3 ( i )2Y(H~ -1)" .r!J-c 

• IXJ' OJ I) ~ {3IXrj-t / ~~; {3
i 

Consequently, Pi in (A12) has to be replaced by 

p/(x)=p/ +2y(H:,_t)x, (B3) 

At (J = 0, the part of the square bracket r 1 in (B2) 
which is not Q or Dc is a function of (Pi X~'-l) only, , 

The equivalent equation to (A15) becomes 

r(-x) [1 ~ 
H} div a ({3iX}) 

x{li{3IX~H) -2Y(H:r l )A.(!3l xl, 0)]" expy.SELxll2C (t, pi, 0, i3x)) } 
(1 + Q(O, i3x) • 

(B4) 

If we denote by n the number of derivatives per­
formed over the exponential and by Pc' the number of 
derivatives performed in the square bracket [ 1 of 
(B4) over the terms corresponding to an s cut c' which 
does not intersect any K~, we get, up to multipHcative 
factors, 

/-1 ZI:: '[y ,(Hi )_ (Hi )1 ~ ,-"(Hi ) 
[1 «(3 j ) C e y/-l Y ,·-1 Yc Y.-l 

X tXr,-l I 1 

{:it t 

x 1> (i3X) [(13, X~I-l) -2 y
(Ht i -I ) As({3/ xL O)1,"-1:c 'l>c' 

xexp[i(t3lxD\~'(t,pi, 0, (3x)l, (B5) 

where c{l has a Taylor expansion in i3/ X~ and is (3/ inde­
pendent and where v(IP,.r1) satisfies the Same inequality 
as in Appendix A since y (1P,.r1) is null for a divergent 
subgrapho We now integrate over P, and obtain 

r(-x +~ Pc') r (- W~G) +17 +x) 

,f1 rlX~ q, (J3X) 
Hj dl'9 
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x[imL - i[(t,pL 0, ;3X)]w(C)/2-n-x. (B6) 

To evaluate the analyticity properties in:x of the ex­
pression (B6), it is convenient to use (A20) to transform 
the sum over c' in the curly bracket { } into a product. 
This leads exactly to the multiple Mellin transform 
(A22) if we write (00) under the form 

n{; f~c'+IOO dZc'} o(x-:0zc.)M(zc')' (B7) 
c' LIT Pc' -i 00 c' 

Since the single Mellin variable x is the sum over all 
s cuts c ' of the variables zc', it is easy from Appendix 
A to describe the analyticity properties of Mc(x) in x. 
It was found there that a lower bound of analyticity in 
x is given by n'" - 1 and equal to (- 1) for the graphs 
of Sec. 3. On the other hand, we may look for an upper 
bound. We consider the point P:{Pc'=O} for all s cuts 
c' 0 Such a point may be on the following edges of the 
polyhedron defined by (A23), (A24): 

for !P,.l-t divergent and if :I c' such that Pc' > 0 and 
Yc' (H;._t) ~. 0, 

• 
- Pc' =0 

(BBa) 

(BSb) 

for those s cuts c ' such that Pc' = O. It is impossible 
to generate a diagonal hyperplane tangent in P at the 
polyhedron by linear combinations of (BBa) and (BSb) 
with nonnegative coefficients, except for the case where 
all Pc' = 0 [(BBa) is then useless]. P is then on the 
diagonal hyperplane (2: c'Pc' = 0) and that corresponds to 
the pole of ;U o (x) at x = 0 which comes from the Euler 
function r (- x). We just proved that Mo(x) is analytic 
for n < Rex .: 0, and in Sec. 3 for - 1 < Rex < O. It is a 
consequence of Ref. 14 that Mc{x-) is meromorphic with 
poles at Rex=O,I,2 due to r(-x) and Rex=n, 
ac r n, ... due to the a integral. The purpose of Sec. 3 
is to define the analytic continuation of M c (x) for 
ac <" Rex r - 1, and to extract the structure of the 
residue at x = - 1. 

B. The function MG (xl 

We define the function 2iiJc (x) as the right-hand side 
of Eq. (3.7), where now the subtraction operator is de­
fined for ac <: Rex --: - 10 

The R operator still subtracts once the logarithmi­
cally divergent subgraphs but it also subtracts once the 
leading subgraphs [essential subgraphs with w(<p) 
= - 2.1' (<p) 1. Such leading subgraphs were shown in 
Appendix A to be a nonempty union of single rungs with 
a union of divergent subgraphs. To find the analyticity 
properties of ii1G(x) inx, we must reproduce Appendix 
A for this function. Let us give the main differences. 
The case G leading is trivial, and we consider G not 
leading. 
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First the elements of K are now divergent subgraphs 
and leading subgraphs. In the nest K U H, divergent 
subgraphs contain only divergent subgraphs and leading 
subgraphs contain only divergent and leading subgraphs. 
The largest If' being either divergent or leading all 
H"S except EP,.;-I are divergent or leading. We have 

y(K;)~ Y(H}-t) ~ y(K}_t) '<I i,j =1, 2, •• " Y j - L (B9) 

The function As(a) becomes now 

/ 1/ 2Y(K~) i 2Y(H~) 
A s (;3x, a ;3) = n (a j i3i ) n. (i3 i Xj) 

Kj Hj 

(BIO) 

and P, (x) becomes 

(Bll) 

with 
riot 

Pi=:0 [4L(K:)-4L(H})] + :0 (1)+ :0 (1). 
j.1 Hj cllv H} leading 

(B12) 

% define 

V=:0 y(H}) - :0 y(K}) =y(14.-I) + W. (B13) 
Hi KI • J J 

The quantity W is '" 0 but V may have all signs ex­
cept if 14rt is leading where v? O. 

When we set a equal to zero in the square bracket 
[ ] in (BIO), we obtain, except for the functions Dc and 
Q, only a dependence in (13; X;.-t). The reason is the 
following: If <p is divergent o~ leading, Yc(<p) is equal 
to y(<p) for all "good cuts" c. When we set a:._1 equal to 
zero all terms of the square bracket disappe~r except 
those corresponding to "good cuts" c' , Such a cut c' do 
not intersect the divergent subgraphs of any H} and con­
sequently y c (H}) is equal to )' (H:J and the variables 
(13, x}) disappear, Then 

( 
'/ 2>(K;) • 2Y(H~) / I f! a J 13,) n (13; xj) 1 A s «(3x, (] (3) i 

K' H' "pO 
J J 

=[~ n(J3. i )2Yc'(H~I-t)-2y(H;1_1){1 +Dc(O,i3X)}] 
'j i*1 • Xr j -l 1 + Q(O, i3x) , 

(Bl4) 

After taking the derivatives a/aJ3X on the divergent and 
leading subgraphs ~, we get an expression Similar to 
(B5) where now 

o ~ V{H~i-l) '" inf[1, 2 ~ (y c' (H:r1 ) - Y (H;j_t)) P e'] (B15) 
c 

for divergent and leading subgraphs I4.-1 and zerO 
otherwise. The integration over 13, giv~s back (B6) 
where now we have also integrations over the variables 
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x~ corresponding to leading subgraphs and p,Vc) is given 
by (Bllt We then use a multiple Mellin representation 
of (B6), and we obtain "polyhedric conditions" for the 
integrals in (B6) to exist. We get, instead of (A22), 

JI(zc') = ~ r(- zo' + pc') r( p zc' + n _ W~G)) 

xf 1 [l [dp p2i+1>,(X)-11 n d i 
. t! i / i { dl'1 Xi 

o ' H J leading 

(B16) 

Absolute convergence for the variables xj requires 

(B17) 

and absolute convergence for the variables 13, means 

- 0 y (K~)J (0 Pc') '> - (2i + Pi) + V(H~._I) • (B18) 
Ki. c' t 

1 

In (Bl7), H~._1 is either a divergent subgraph or a , 
leading subgraph. The polyhedron of definition for the 
integral (Bl6) is given by (B17), (Bl8) and by Pc' <Pc', 
'ic'Pc' '> W (G)/2 - n. Again, we look for the hyperplane 
('ie'Pc' =: ~) which is tangent to the polyhedron and be­
low, and we look for the polyhedron which gives the 
largest ~, Then, we take n equal to zero and v(~ -1) 

. I 
equal to vrnax (IP"._l) defined as the right-hand side of 
(B15). We note 'that if H~._l is divergent, (B18) is auto­
matically verified by (B1'7) and (Bll), (Bl2), It is 
convenient to rewrite (B17), (B18) under the form (with 
VIDal< replacing v) 

20 Yc" (~.-1) Pc" " - 1 + vrnaJ«(H~ -1) if !P,.t-1 is div, 
e" ~ i 

(B19) 

if ~.-1 is leading, (B20) , 

where e" are "bad cuts" which intersect divergent 
subgraphs of H;._t, 

t 

20 [Yc'(~.-t) + W] Pc' '> W(~t-l) - 2 W 
0' , 

.0 (1) + vffiaJ«(H;i_l) ' 
Hf,~ leading 

1 

(B21) 

for any convergent subgraph IP,..-h leading or not. In 
(B21), we exclude the case whe~e IP,..-1 is the only ele-
ment of fit and where ' 
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(B22) 

since this case is already taken into account by (B20). 
In all other cases, [ye,(IP,. -1) + Wl is not necessarily 
positive, except for H; -1 leading. We now prove that 
the right- hand side of (B21) is negative or nullo 

- If H;/_1 is leading W (~ri) is [- 2y (H~ -i)] and 
[W(H;/_l) - 2W]= - 2V is negative or nuil; the remain­
ing part is also trivially negative or nUll. We note 
that the right- hand side of (B21) is null in this case 
only if (B21) is equivalent to (B20) (with vrnax = 1); this 
being excluded from (B21), we conclude that if H~("1 
is leading, the right-hand side of (B21) is strictly 
negative, 

-If I4.-1 is not leading but convergent, ~ax is null, 
[W + Y (K~._I)] is positive or null, so that we must 
prove that [w (IP,..-t) + 2y (K;._i) 1 is negative or nulL The 

., , i 
subgraph K;._1 possesses y(Ky -1) single rungs; each 
single rung has four adjacent hnes, Let q be the num­
ber of adjacent lines in H~i-l and let ep be the subgraph 
obtained from H~i-l after cutting the r rungs and the 
q adjacent lines. Let q' be the number of loops de­
stroyed by the cutting of these lines; we have 

w(ep)'S 0, 

q'~' E(q/2) 'Sq/2, 

Now, 

w (!4-/-1) == w (ep) - 2y (K;j_i) - 2q - 4q'. 

(B23) 

(B24) 

(B25) 

This proves that [W(!P,.i-1) +2y(K~i-t)J is negative or 
null and then that the right- hand side of (B21) is nega­
tive or nulL For this quantity to be null, we must have 
the following conditions: IP,.. -1 is a convergent nonlead­
ing subgraph and N' = {~'-IL w (ep) == 0 which implies 
q > 0 since H;._t is not le~ding, and the q/2 pair of , . 
adjacent lines form with the single rungs of K~._t. 
q/2=q' independent loops. In this case ' 

V (!4-,-1) = Y (K;i-1) - q/2 < y (K;,-t) (B26) 

and for all "good cuts" e', the quantities ['.'c,(H~.-l) + W] 
are equal and strictly negative, We may now lo~k for the 
hyperplane ('ic'Pc'=~) tangent to the polyhedron and 
below" We first note that since G is not leading, the in­
equality 22: c'Pc' >w(G) is a special case of (B21) for the 
index i ==l. We define 

1::>.' = inf ~ st!P ((l'(~\-1) )}, 
c' l' pc,(!P,.,-I) 

(B27) 

where inf is taken over all "good cuts" e' and sup runs 
only over the indices i such that pc'(~.-l) :> 0, The quan­
tities O! (H~/_l) are the right- hand sides of the inequali­
ties (B21) and pc,(H;._I) is the corresponding coefficient 
of Pc' on the left-han'd side. Since Pc'(~/-I) > 0, 0. (H;'_l) 
is strictly negative (at least for H;._t = G, we have ' 
Pc' > 0). Then, ' 

CI (H~._I)/ pc,(H;._I) , , 

= - 1 + (w (~;-tl + 2y c·(H;!_t) - 0 (1) 
H} div 

- . 0 (1) + vm""(H;i-l~2[yc'(H~i_l) + Wjtl (B28) 
Hj leading 
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is less or equal to (- 1). It is equal to (- 1) if H' 
= {H~ -I}, K' is empty or K: -I is a divergent subgraph, 
so th~t W = 0, ~.-h is leading and there exists a "bad 
cut" e" such that'Pc" > 0, Yc"(IP,. -1) > y(H~ -IL It is also 

• { • } rTf' , equal to (- 1) if H' = ~rl , fly -1 is convergent non-
leading, and if w(iP,. -1) = - 2Yc,tiP,..-I)' , , 

Consequently, 

(B29) 

Now, we prove that II ~ ll'. We define (jJ as one of the 
subgraph iP,..-t. and the "good cut" C, such that i3c{4?) > 0 , 
and 

(B30) 

for all qJ such that i3c(qJ) > 0, We consider the point P 
such that 

pc'=_1)3 

Pc' = + TJ2 

Po = ll' + 1), 

if Pc' =0 and e' t-c, 

if Pc' > 0 and e' t-c, (B31) 

where TJ is positive and small (TJ3« TJ2 «TJ). The point P 
is as close as wanted to the hyperplane (2; c'Pc' = ll'), 
The point P satisfies (B19) and (B20), For (B21), either 
[Yo + W] is negative, and since ll' is also negative (B21) 
is valid; either [Ye + W] is positive and by (B30), (B21) 
is valid; or [Yo + W] is null and (B21) is valid because 
the right- hand side of (B21) is, then, a strictly negative 
integer, Consequently, the point P is inside the poly­
hedron for TJ small and positive, and 

(B32) 

It remains to show that when ll' = - 1, II < ll', 

We consider the point {Pc' =0 for e"t-c, Pa=-l}, 
This point is on the following edges of the polyhedron 
defined by (B17), (B20), (B21): 

for iP,. -I divergent and if :3 e" such that Pc" > 0, 
( 

i I 
Yc" Hr,_I):> 0, 

for IP,..-I leading and if:3 e" such that Pc" :> 0, 
y c"(iP,. i'-I) > y (IP,.,-I)' 

26 [yc,(IP,..-I) + W]Pc,=W(IP,.._I) - 2W 
c' J.. , 

(B33a) 

(B33b) 

(B33c) 

for IP,.rlleading, if Hi={iP,. -I}, Wt--y(H; -I), :3 e" 
. ) i. I i 

such that PCN > 0, Yc',(H~i-l >'y(H~i~l)' and for H ri -1 con-
vergent and nonleading, if fl' = {H~ -J; in both cases we 

I ) I I must have w(Hrrl = - 2y;;(Hr I-I), 

- Pc' = 0 (B33d) 

for Pc' = 0 and e' t- C, We must find a linear combination 
of (B33a)- (B33d) with nonnegative coefficients which 
generates a diagonal hyperplane. If (B33c) is used with 
lP,.,-1 leading, for all "good cuts" Yc' =Ya' but for the 
"bad cuts" e", Yc" > Yo and since Pc" > 0, there is no 
way of obtaining a diagonal hyperplane, If (B33c) is 
used for iP,..-1 convergent nonleading, we proved at the • 
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end of Appendix A that since w (lP,.rl) = - 2Ya(H;r l ), there 
exists another "good cut" e' such that Yc' <Yo and clear­
ly again there is no way of generating a diagonal hyper­
plane, Consequently, if ll' = - 1, II is strictly less than 
ll', We have just proved that a lower bound of analyticity 
in x for ·I({G(x) is given by a number aG < - 1. Let us 
look for an upper bound, 

We consider the point {Pc' = 0 ve'}, This point might 
be on the edges of the polyhedron. First, it might be on 
the edges {- Pc' = - Pc' = 0 for all e'}, In this case we do 
generate a diagonal hyperplane by linear combinations 
of the edges with positive coefficients and this explains 
the pole at x = 0 in r(- x). The above point may be on the 
edges (B19), (B20), but it is impossible to generate a 
diagonal hyperplane (with positive coefficients) between 
them and with the edges {- Pc' =- Pc' =O}. On the con­
trary, the point may be on the edges (B21) when IP,.r1 is 
not leading convergent and the right-hand side is zero; 
in this case the quantities [y c' + Wl are negative and 
equal for all "bad cuts" e", with the edges {- Pc" = - PCN 
= O} we may generate a diagonal hyperplane even if 
V II "> 'v I - C - • c • 

We have proved in part B of this appendix that JIG (x) 
is analytic for aG < Rex < 0 with a G .' - 1 and that in 
some cases the pole at x = 0 is not only due to the Euler 
function r(- x) but also to the ex integral. 

C. The function M GIJ (x) 

The function ifiG/J(x) is defined in (3.12) and is found 
to be the p.:oduct of several functions MG; and of two 
functions MT{. defined respectively in (4,3) and (4.2). 
Their peculi~rity is that [NG/PG,l and [NK/PK.l are 
homogeneous in all variables ex. of degree respectively 
equal to (- 1) and zero, The operator R subtracts the 
leading and the divergent subgraphs of the kernels G; 
or K;, If we perform a decomposition of the (lI integrals 
into Hepp's sectors and into equivalent classes of nests, 
we obtain for the functions [NG.!PG.l and [NK./PK.l, two 

• o. "! 't expresslOns SImIlar to the expresslOn (B10L For some 
graph qJl which are the union of a subgraph qJ' in the 
kernels Gi or Kl with some lines external to the kernels, 
the functions Yc(qJ) are given by 

(B34) 

where 6(qJ) is zero, one or two if qJ has zero, one or 
two more independent loops than qJ', Some coefficients 
Yc(qJ) may become negative, The graphs K~ are neces­
sarily leading or divergent and belong to the kernels 
Ki or Gi ; only H~I_I may have external lines to the 
kernel. 

It is easy to see that, since 

IP,..-I = Rl U K~._I , . (B35) 

if R' = Rli u {Z}, where Rti is a possibly empty subgraph 
of the kernel, we have 

IP,..-I = H~~_l u {Z}, . , (B36) 

where H;;_l belongs to the kernel and is (R'i U K;r1)' 

Consequently, to any equivalent class r with the 
nests Kl, Hi, we may associate an equivalent class r' 
with the nests Kti=Ki H,i={H'.l=HI H,l }built ,I 1 j, r i .. 1 

M.C. Berg~re and C. Gilain 1511 



                                                                                                                                    

uniquely with graphs in the kernel. If now we look for 
the polyhedric conditions of analyticity, we get (B17), 
(I318), Pc' "Pc' and [1-o(G)l(L·pc·»w(G)/2-n. The 
smallest polyhedron is given by v = vmax and n = 0 and 
we obtain the conditions (B19), (B20), (B2I). 

From the entire graph Ri , we get no condition since 
6(G) = 1; from the entire graph VI> we get 

(B37) 

Since w(G i ) "" 0 (it is zero for the graph of Fig. 9), 
(B37) contains 2: c' Pc' c' O. From the graphs I4.-1 such 
that their part H;~_l in the kernel is empty, w~ get no 
condition since they have no loops. Now we prove that 
for all graphs H~._1> the conditions (B19), (B20) , (B21), 
'f, c'Pc' ' 0 define ~ polyhedron which completely contains 
the corresponding polyhedron obtained from the corre­
sponding graphs H~~_l in the kernel. The conditions 
(I319) and (B20) ar~ the same; we prove that the condi­
tions (B21) for H;~_l leads automatically to the condi­
tions (B21) for H~:_l' We have from (B34) , 

(B38) 

and, since (f;c'Pc') is negative or null, 

2~ ["c,(H!.-t) + Wlpc'? 2~lvc,(H;~_1) + Wlpc" 
c' l c'" 

(B39) 

Ot: the other hand, W(H.~i-l)? w(!f,.i-1) since each loop of 
U;i- t which is not in H~i-l contains independently two 
external legs to the kernel. We proved that the tangent 
diagonal hyperplane from below to the polyhedron 
descrIbed by (B19)- (B21) for the graphs !P,.r1 is below 
or equal to the tangent diagonal hyperplane to the 
corresponding polyhedron for the graphs H;!-1 which are 
all in the kernel. Thus we have for region of analyticity 
in x of r(-X),VC.(X), , 

(lc
i 

Re\:' 0 (B40) 

with ({G. < - 1. A similar relation holds for r(- x) MKI (x). 
The sin'gularity at Rex = 0 might, in some cases, comes 
from the (J! integral. Finally, the region of analyticity 
in x for 11 G/J('C) is given by 

(f (; / J <: Re'C / 0 

with (/c/J ~-=~uJ) (acl,aK;) <-1, 
GiKi 
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(B41) 

Let us mention that the singularity at Rex = 0 which 
comes from the a-integral (as in Fig. 9 for instance), 
is present simultaneously in Mc(x) and in some of the 
functions ,iii C / J (x) and is spurious since it was absent 
from lvlc (t'). This spurious singularity is due to our 
method of desingularization, but this method is at 
present the only one we know which allows the summa­
tion of Sec. 4. 
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A note on recoupling coefficients for SU(3)8) 
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A 6-('\,...) coefficient, denoted by Z and different from the usual U coefficient, associated with a specific 
recoupling of three irreducible representations of SU(3), is defined. A general 9-(,\,...) coefficient, 
analogous to the unitary 9-J coefficient of the angular momentum Racah algebra, is then expressed in 
terms of the Z coefficient and two U coefficients. In this way problems associated with the existence of 
outer multiplicities in the products of irreducible representations of SU(3) are circumvented. 

1. INTRODUCTION 

Classification according to SU(3) of the spatial part 
of wavefunctions for light nuclei provides a good basis 
for shell model calculations. The most efficient way to 
perform such calculations is to first make an expansion 
of the effective interaction into SU(3) irreducible tensors 
by appropriately coupling togther the creation and 
annihilation operators for particles in individual 
oscillator shells. 1-3 The evaluation of many-body matrix 
elements in terms of Single shell matrix elements4 is 
then reduced to an exercise in the use of the Wigner­
Eckart theorem and recoupling techniques for the 

= z:; Z((A2/l2)(AI/lI)(A/l)(A3/l3)' 
(X13" 13 )P13P 13,2 

(AI2/l12)Pl~12,3(AI3fl.13 )P13PI3,2) 

(A/l)P I3,2 

(1) 

groups involved. The spherical tensor formalism 
employed in the Rochester-Oak-Ridge shell model 
code4 carries over almost unchanged to the present 
problem, the only essentially new feature being the 
appearance of outer multiplicity labels for SU(3) 
couplings. Draayer and Akiyama have given algorithms 
for calculating Wigner and Racah coefficients for SU(3) 
in the most general cases and have provided computer 
codes for evaluating these coefficients. 6 Their results 
are sufficient for shell model calculations within a 
single major shell. For more than one shell 9-(A/l) 
coefficients are required. It is the purpose of this note 
to describe a general method for calculating such 9-(A/l) 
coefficients. In special cases 9-(,\/l) coefficients have 
been used previously by a number of authors. 7-10 The 
notation of Ref. 5 is adhered to throughout. 

The Z coefficients may be calculated in the same way 
as the U coeffiCients, 5 namely as the solution of a set of 
simultaneous equations obtained by fixing E 13A 13 and 

2. THE Z AND 9 - (Ap) COEFFICIENTS 

The U and 9-(lI./l) coefficients are by definition a 
straightforward generalization of the corresponding 
coeffic ients for SU (2). However, the evaluation of the 
9-(A/l) coefficient as a sum over products of three 
6-(A/l) coefficients is not quite so straightforward. The 
reason is the nonexistence of a symmetry relation of the 
Wigner coefficients permitting the interchange of the 
two (A/l)'S in a product when there exists outer multipli­
city in that product. 5 We define the Z coefficients to be 
the elements of a unitary transformation that effects the 
following recoupling transformation: 

a)Research at Brookhaven supported by the U. S. Department 
of Energy under Contract No. EY-76-C-02-0016. 

fA at their highest weight values in the relation 

.0 «(AI3/l13)E1ll'13(A2/l2)E2A2 II (A/l)EA)p 
P13,2 13,2 

X Z((A2/l2)(AI/lI)(A/l)(A3/l,), CA I2 /l 12 ) PI2PI2,3 

(A nfl. 13 )P 13P13 ,2) 

z:; «(AI/lI)EIAl(A3/l3)E3i1.311 (A I3 /l,,)E j ,l\3) 
EIAIA3A12 1'1.1 

x U(A2AIAA3,AIP13)' 

The 9-(A/l) coefficient may now be expressed as 

(At/l,) (A2/l2) (A I2 /l12 ) PI2 

(A3 /l3) (A4 /l,,) (A34 /l34) P31 

(A I3 MI3 ) (A 24 /l24 ) (A/l) PI3 ,24 

P I2 ,34 
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x Z(A2JJ-2)(AtJJ-I)(AOJJ-O)(A3JJ-3)' (AI2 JJ- 12 )PI2PI2,3 

X (A):,IJ.t:1)Pt:1P t:l,2) 

X U(A l2 JJ- t2 ) (A3 JJ- 3 ) (A JJ-)(A4 JJ- 4), (AO JJ- O)PI2,3P04 (A34 JJ- 34 ) 

XP:l1P t 2 ,3'1)' (3) 

When p~ax = 1 and pT:f:2 = 1 the Z coefficient reduces to 
a U coefficient with the same arguments times a phase 
factor (_)At+"I+A+"+AI2+",2+At:1+"" and we recover from 
Eq. (3) the straightforward generalization of the 
corresponding expression for SU(2). 

3. APPLICATIONS 

The 9-(AJJ-) coefficient typically appears when the 
matrix element of a coupled tensor operator acting on a 
two-component system is required. In Eq. (4) the tensor 
operators R (Ar"r) (1) and S (AS"S) (2) operate on the first 
and second parts of the system respectively, The 
double- and triple-barred matrix elements are reduced 
matrix elements with respect to 0(3) and SU(3), 

«A
I

JJ- I)()2JJ-
2
);(AJJ-)PKL II [R(Ar"r)(1)XS(As"s)(2)] (At"t)Pt"tLt II 

x I(A;JJ-;l(A~JJ-~); (A'JJ-')p'K'L') 

=6«A' JJ-')K'L'(AtJJ-t)KtL t II (AJJ-)KL );«At lll) 
p 

(4a) 

x I (A;JJ-;)(Afllf); (A'Il')P'); 

(A;Il;) (Arllr) (AII1 I) PI 

=6 (Af Ilf) (AsllS> (A21l 2) P2 
PIP2 -(A'il') (Atilt) (All) P 

P' P 
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The 9-(AIl) coefficient 'reduces to a U coefficient if 
(Arllr)'" (00) and to a Z coefficient if (Aslls)'" (00). If the 
operator is a one-body operator which operates in two 
shells (Arllr) and (Asll.) are of the form (AO) or (Oil) and 
the Z reduces to a U. An example is Hecht's explicit 
construction of spurious states of center of mass 
motion. 7 The 9-(AJJ-) coefficients also occur in the cal­
culation of multinucleon spectroscopic amplitudes from 
SU(3) shell model wavefunctions. 8,9 Here also, at least 
under the assumption of cluster transfer, the Z reduces 
to aU. For this case Hecht and Braunschweig express 
the 9-(AJJ-) coefficient in terms of three U coefficients in 
Appendix B of their paper. 9 In a very similar context 
9- (All) coefficients occur when shell model wavefunctions 
are related to cluster model wavefunctions. 10 

4. SUMMARY 

The results of Draayer and Akiyama" have been 
extended to include those recoupling coefficients 
required for SU(3) shell model calculations in a multi­
shell basis. The results are valid for arbitrary outer 
multiplicities in the couplings involved. 

Computer codes to evaluate the Z and 9-(AJJ-) coeffi­
cients have been written. They are compatible with the 
routines of Akiyama and Draayer" and are available on 
request. 

1 K. T. Hecht, Ann, Rev. Nucl. Sci. 23, 123 (1973). 
2R.D, Ratna Raju, J. P, Draayer, and K. T. Hecht, Nucl. 
Phys, A 202, 433 (1973). 

3J.p. Draayer, Nucl. Phys. A 216, 457 (1973), 
4J,B. French, E.C. Halbert, J,B. McGrory, and S.S.lVI. 
Wong, Adv. Nucl. Phys., edited by M. Baranger and E. 
Vogt, 3, 193 (1969), 

5J,p. Draayer and Y. Akiyama, J, Math. Phys, 14, 1904 
(1973), 

"Y. Akiyama and J.P, Draayer, Comput, Phys. Commun. 5, 
405 (1973), 

7K. T. Hecht, Nucl. Phys. A 170, :\4 (1971). 
8N. Anyas-Weiss et al., Phys, Rep. C 12, 201 (1974), 
8K, T, Hecht and D, Braunschweig, Nucl, Phys, A 244, :365 
(1975), 

10K. T. Hecht, Phys. Rev. C 16, 2401 (1977). 

D.J. Millener 1514 



                                                                                                                                    

Solution of the almost-Killing equation and conformal 
almost-Killing equation in the Kerr spacetime8

) 

Clifford Henry Taubesb
) 

Department of Physics, Harvard University, Cambridge, Massachusetts 02138 
(Received 16 January 1978) 

Four linearly independent classes of vector solutions to the generalized almost-Killing equation in the Kerr 
spacetime are presented in terms of Teukolsky's radial and angular functions. The vector solutions which 
are asymptotic to the ten Minkowski-space Killing vectors are given by way of example. 

I. INTRODUCTION 

This paper derives solutions of the vector equation 

(1. 1) 

(for constant c) in the Kerr spacetime, that is with the 
covariant derivative Va taken in the Kerr metric. When 
c=2, Eq. (1.1) reduces to Maxwell's equations for a 
source-free, test electromagnetic field in the Kerr 
background; ~ is the vector potential of this field, As 
is well known, the equation in this case admits to a 
remarkable decoupling of components and of variables 
first found by Teukolskyl,2 and recently codified with 
great clarity by Chandrasekhar. 3 A main result of this 
paper is to show that a large class of solutions of (1. 1) 
for general c can be expressed in terms of essentially 
the same radial and angular functions that solve the 
electromagnetic Teukolsky equation and the scalar 
wave equation. 

Equation (1. 1) is not just an ad hoc generalization of 
the test Maxwell equation, but rather has definite phy­
sical interest of its own. When c = 0, the equation is 
called the" almost-Killing equation" (AKE), and when 
c = ~ it is the "conformal almost-Killing equation" 
(CAKE); these kinds of equations have been investigated 
by York4 and others as a means for generating "natural" 
vector fields in an asymptotically flat spacetime, in 
terms of the symmetries of the spacetime at asymp­
totically flat spatial infinity. In applying this formalism 
to the specific case of the Kerr metric, as is done here, 
one hopes to make progress towards elucidating the 
very special" hidden symmetries" of the Kerr metric 
which have been noted by so many investigators, For 
example, one might hope to find a new coordinate sys­
tem, in which the hidden symmetries become more 
manifest. Before proceeding, we should indicate how 
the AKE and CAKE can arise in this context: 

The generator of an exact isometry of course satis­
fies Killing's equation 

(1. 2) 

Since this equation has ten independent components, but 
only four unknowns, it has (in a general spacetime) no 
solution. In the Kerr spacetime, however, there are 
two linearly independent solutions, corresponding to 
the symmetries of time stationarity and axisymmetry. 

alSupported in part by the National Science Foundation (PHY-
76-14852), 

blNational Science Foundation Pre-Doctoral Fellow. 

Most of the useful Kerr coordinate systems (e. g., the 
Boyer- Lindquist5 system) adopt appropriate coordi­
nates t and ¢ such that a lat and a/a ¢ are Killing vec­
tors. Since the Kerr metric is asymptotically flat, 
however, there are further Killing vectors of Minkow­
ski space which are asymptotically Killing vectors of 
the Kerr spacetime, in the sense that the equation 

(1. 3) 

holds (where r is the Boyer- Lindquist radial coordi­
nate). York's AKE is obtained by acting on Eq. (1. 2) 
with an additional va. The resulting equation has four 
components for its four unknowns, so it is in general 
solvable. Any solution of Killing's equation is also a 
solution of the AKE; and, generally, any asymptotic 
Killing vector is asymptotic to a solution of the AKK 
Therefore, the AKE gives a natural way of extending 
symmetries (whether approximate or exact) from infi­
nity to the entire spacetime. One program for finding 
"natural" Kerr coordinates might be to find four mu­
tually commuting, linearly independent almost-Killing 
vectors of this sort, and then use their integral curves 
as a coordinate grid. 

A generalization which extends the commutator alge­
bra of the Killing vectors, is to also include "conformal 
Killing vectors" satisfying 

(L4) 

since any Killing vector is also a solution of (10 4), The 
equation derived by acting on (1. 4) with va (which is 
the CAKE) gives a priori just as natural an extension 
of symmetries from infinity. Evidently, any constant 
on the right-hand side could also be viewed as not "un­
natural," so we are led to the general equation (1, 1), 
which we now proceed to solve. 

Section II consists of preliminaries and the introduc­
tion of the functions in terms of which our solutions will 
be expressed. In Sec. III, four linearly independent 
solutions are derived. Section IV consists of a presen­
tation of those solutions to the AKE which are asymp­
totically Killing vectors of the Kerr space-time in the 
sense of Eq, (1. 3). 

II. FORMALISM AND TEUKOLSKY FUNCTIONS 
In Boyer- Lindquist coordinates with c = G = 1 the 

Kerr metric is 

ds2 = - (1- 2Mr16) dt2 - (4Mar sin2 8/6 ) dt dT 

+ 61 to dr2 + 6 d82 + sin28(r2 + a2 + 2Ma2 r sin28/6 ) d¢2. 

(2.1) 
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Here M is the mass of the black hole, a1vl is its angular 
momentum (0 ~ (I < M) oriented in the 8 = 0 direction. 
We have also 

(2.2) 

The derivations will use the standard Newman-Penrose 
formalism,6 with Kinnersley' S7 null tetrad. The latter 
has [I, r, 8, ((J ] components 

I" =[()2 + (l2)/t., 1, 0, ({/t.I, 

iI). =[(/2 + ([2), _ t., 0, (I\. 2:C;, (2.3) 

miL =lil{sin8,0, l,i/sin81,v2(r+iacos8). 

Given a vector field one can form a field tensor 

and then project to get the components 

<PI =F"v1" 11(, 

<Po = 1 F" v (I" !IV + III" III V
), 

<P .1 = F" Jil" I/v 

A. Homogeneous functions: h, Z, g, X 

(2.4) 

(2.5) 

We suppress the spheroidal- harmonic indices nand 
III which should label the separated solution, and write 
Teukolsky's solutions for <PI and <P.1 which satisfy 
Maxwell's equations [Eqc (1 1) with c=2]: 

<P 1 =li1(r)Zl(8, ri), I), 

<P.1 =t.iI.1(r)Z.1(A, ri), t) 2(Y- iacose)2. 
(2.6) 

The functions Zl(e, rp, t) and Z.l(ll, <p,!) have the follow­
ing decompositions: 

2 1(A, 1), t) '" exp(- iwt)exp(illlc!»81(A), 
(2.7) 

The radial functions III and 1i.1 and the angular functions 
81 and 5.1 are governed by the equations 

Id (0d( ) 1[ 2 .( __ ),] --rl t."-l lz'l) +- K ±21 r-M K lz±l 
t. Y (y t. 

1 d( d ) 22" ) sinA de sinA riA (8,1) + (a w cos" e=r= 2(1w cosA 8±1 

1 -, ) - ~e (iii" + 1 ± 2111 cosA 8±1 
sm 

+ (AI + 2 - ({20.-,2 + 2({WIII)S'1 = 0, 

where we have defined 

K = (1,2 + 1/),'-' - (1111. 

(2.8) 

(2.9: 

(In Teukolsky's notation R1 ,- iiI, R.1 - t.1z.1.) The sepa­
ration constant Al is a characteristic value of the an­
gular equation determined by the regularity conditions 
on 51 and 5.1 at 8=0 and 8=1T. It follows from these 
equations that 51 (A) ~~ S.1 (1T - Al, 

One may write these equations in a more concise 
form that is easier to manipulate by defining a pair of 
radial and angular operators which are closely related 
to the directional derivatives along the tetrad vectors: 
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[ a III ] 0= - iiB - sinA + aw sinO , (2.10) 

I'r =- -+-. -- aw sinA . [ a In ] 
illl sme 

Here the notation is very similar to that used by 
Chandrasekhar3 and in fact the derivation will be es­
sentially by the same method he used in deriving the 
vector potential solutions to the vacuum Maxwell equa­
tions in the Kerr spacetime. If one considers the direc­
tional derivative of a quantity with I and ¢ dependence 
exp(- iwt) exp(imrp), then these operators have the fol­
lowing definitions: 

fj =1iJ.\1," , fj+=- (2Z;/t.);/' \1,"' 

o=,f2 (y + ia cose)miJ. \1 iL' 

cr+ =v2(r - ia cos8)m'" \1". 

(2.11) 

In terms of these operators, the equations for the radial 
functions lz±l and the angular functions S±1 or Z,I(A, rp, t) 
are 

([jf)+ t. + 2iwr)h1 = (AI + 2)h1, 

I./Y/J t. - 2iwy)Iz.1 = (AI + 2)11 .1, 

[1l(cr+ - cote) - 2aw cosejzl=- (AI +2)Zl, 

[(1+(~ - cote) + 2aw cOSe]Z.1 = - (AI + 2)Z .1' 

(2.12) 

Turn now to the scalar wave equation in the Kerr back­
ground, which CarterS first showed to be separablec 
The solution can be written as 

where 

(2.14) 

The radial function lzo(r) and the angular function So(A) 

are governed by the equations 

d (d ) (K2 2) ely t. dy (h o) + 't. - an Tzo = 0, (2.15) 

1 d (. d \ (2 2 2 }}/2 ) • 
sine de sme de (So)} + ~I w cos A - sin2e .so (2.16) 

+ (dG - a2w2 + 2awnl )5 0 = 0. 

The equations for the radial and angular functions may 
also be expressed in concise form using the operators 
defined previously from the tetrad directional 
derivatives: 

(j)+ 6/) + 2iwr)ll o = a~lzo 

or equivalently 

([j A[Y - 2iwr)ho =- a~ho, 

[W - cote)~ - 2aw cose]zo =- dGzo, 

or equivalently 

[(1r- coW)V'+ + 2aw cosejzo =- a~Zoo 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The separation constant dG is determined by the regular­
ity conditions on So. 

Clifford Henry Taubes 1516 



                                                                                                                                    

The functions hI' h.1' Z 1, Z.l satisfy the following lad­
der relations expressable in terms of these opera­
tors9-

11
: 

DDtl.h.1=aih1, D+D+tl.h1=aih.l> (2.21) 

B"(tr-cotB)Z.1=aiZ1, 17"(ir+-cote)Zl=a:1Z.1' (2.22) 

Functions which we will need for the AKE and CAKE 
solutions are the intermediate functions obtained by 
operating on h±l and Z±l only once. We define 

(2.23) 

It follows from the ladder relations, Eqo (2021) that 

D +gl = a1h.l> D g.l = a1 1z1' 

D+ tl.D g.l = aigl> D tl.D+g1 = aig.l> 

and that gl satisfies the following inhomogeneous 
equation, 

D+ tl.D gl + (2iwr - Al - 2)gl = - 2iwh1tl./a1, 

where we have defined the constant 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

The complex conjugate equation is satisfied by g.l' One 
can make the analogous definitions for the angular func­
tions and easily derive the analogous equations, viz., 

1 1 
Xl = - - (17" - COtB)Zl, X.1 =- (tr - cote)z .1' 

a1 a1 

Then from Eq. (2.22) one gets 

oX.1=a1Z l> 1j+X1=-a1Z _1, 

and 

and 

(2.28) 

(2.29) 

(2.30) 

B. Case of zero frequency: Additional functions f and Q 

All these new functions are a bit confusing. To see 
what is going on, we can consider the limit of time­
independent solutions, where w = 0. (This is physically 
the most interesting case since one will generally want 
time-independent almost-Killing vectors. ) When w = 0, 
the functions Z±l are just the spin weight ± 1 spherical 
harmonics. They are generated from the ordinary 
scalar spherical harmonics, denoted y~m (which in the 
limit that w = 0, Z 0 becomes) by the following expres­
sions using just the operators tr and rr that were defined 
in Eq. (2. 10) (to avoid confusion, the zero frequency 
Z±l will be denoted Y:l'): 

y~m=[n(n + 1)1·1/21jy~m, y~l' =_ [n(n + 1J].1/2rry~m. 

(2.31) 

When w = 0, the constants cro, Ai, and ai are identical 
and are equal to, for the (n, m) harmonic, n(n + 1). The 
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operator 1r acts as a spin weight raising operator, while 
17" acts as a spin weight lowering operator, YZl', y~m 

also have the following relations: 

[n(n + 1) 1·1/2W _ cotB)y~m = _ y~m, 

(2.32) 

From these expressions, it becomes clear that in the 
time independent case, the functions X±l are both equal 
to y~m. For nonzero w, this is not the case. Similarly, 
in the time dependent case Eqso (2,25) and (2.17) show 
that both gl and g_l are equal to !zoo For w = 0, the op­
eratorsD andD+ act as respectively spin weight rais­
ing and lowering operators on the radial functions. For 
w = 0, the function ho(r) is essentially a polynomial in 
r.12 One fundamental solution is 

h~m = (r- ryam/B(r_ r+)·iam/B 

where 

o=2(M2 _ a2)1/2, r± =M ± (M2 _ a2)1/2 

and 2F1 is a hypergeometric function, a polynomial in 
r of degree n since n is an integer. The other funda­
mental solution is the complex conjugate. Therefore, 
h±l are essentially, for w = 0, polynomials in r of de­
gree n - 1 since for w = ° 

, nm_[ ( 1)1.1/2(~ ialll\ ,mn I± - n n + dr =F tl. -; 10 • 

When w is not equal to zero, the function obtained when 
operating on ho(r) by D is no longer equal to the spin-l 
radial function lzl(r) as in Eq. (2,33) for w=O, The func­
tion generated in this way will be denoted 

1 
f1=-Dhk)· 

ao 

Likewise, we define 

f.1 =-.-lD+hk). 
ao 

(2.34) 

(2.35) 

From Eq. (2. 17) one can easily derive the following 
ladderlike relations which f±l and Izo satisfy: 

D+tl.f1 =aoho - 2iwrho/ao, 

D tl.f.1 = aolzo + 2iwrho/ao' (2.36) 

These two new functions satisfy the inhomogeneous 
equations 

f)f) + tl.ll + 2iwrll - aVl = - 2 il.L·h o! ao, 

f)+f) tl.f.1 - 2iwrf.1 - a~f.1 = 2iwho/ao. (2.37) 

The analogous angular functions can be defined from the 
scalar angular function Z 0 when w is not zero by using 
the operators fJ and fJ+. We define the functions Q1 and 
Q.1 which in the time independent limit become Y 1 and 
Y.1 respectively through the relations 

(2.38) 

These functions satisfy inhomogeneous angular equa­
tions derived from the equations for Zo, Eqs. (2.19) 
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and (2.20): 

[~(rr+ - cote) - 2aw cose + <lo]Q1 = 2aw sineZ 01 (Jo, 
(2,39) 

[~.(~ - cote) + 2aw cos8 + (J~]Q _1 = 2aw sin8Z oNo. 

The function Z 0 can be obtained from Q1 (or Q _1) by the 
operation of the appropriate lowering (raising) operator 
in exact analogy to the relations between the radial 
functions, hO'!ll!_l in Eq. (2.36): 

(~ - cot8)Ql = - (JoZ 0 + 2aw cos8Z 01 (Jo, 
(2.40) 

The constants a~ and 71.1 + 2 differ in lowest order in w 
by a term proportional to aw. 13 The equations for hl 
and fl are similar, the difference being the inhomogen­
eous term in the equation for fl with its explicit w de­
pendence and the substitution of ifo for Al + 2 in the equa­
tion for fl which also yields a difference which is to 
lowest order proportional to aw, Thus to zeroth order 
in w, It, and hl are identical, they differ in terms pro­
portional to w. This difference is even present in the 
Minkowski space analogs of the functions It (=f) hoi 0'0) 

and hl and is due to the inhomogeneous term in the equa­
tion for fl which remains even when a=M=O. 

C. Inhomogeneous functions: j{rl. w{r). sIr). A (8.9. t), 
no. 9. t). B (8.1;. t) 

Below, we will find four classes of solutions to our 
master almost-Killing equation (1. 1). Three of these 
classes are expressible solely in terms of the functions 
defined so far, that is, explicitly in terms of solutions 
to the scalar wave equation and Teukolsky's equation. 
For the fourth class it seems, unfortunately, necessary 
to define certain additional functions, both radial and 
the analogous angular ones, which are defined as solu­
tions of the inhomogeneous radial equations whose homo­
geneous solutions are the scalar wave equation radial 
function ho and the analogous inhomogeneous angular 
equation whose homogeneous solutions are the scalar 
wave equation angular function Z o' It may be possible 
that a different technique to derive the solutions will 
obviate the necessity to use functions defined as solu­
tions to inhomogeneous second order differential equa­
tions which are hard to work with, It is also possible 
that these new functions are expressible simply in 
terms of the functions already defined. This is not 
known. 

The first pair of functions are the radial function 
which shall be called j(r) which satisfies the inhomo­
geneous equation 

(2.41) 

The analogous angular function will be denoted A(e, ciJ, t) 
and it satisfies the inhomogeneous equation 

W·+ - cote)1r - 2aw cose + <lolA = cos2 8Z o. (2.42) 

The second pair of functions are the radial function 
which shall be called w(r) which satisfies the inhomo­
geneous equation 

The analogous angular function, T(8, cp, t) is a solution 
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of the equation 

[(rr+ - cote)1r - 2aw cos8 + (J~]T =Z o' (2.44) 

Finally, it will be necessary to define the following 
pair of radial and angular functions for the case where 
w = O. The radial function will be denoted s(r) and the 
angular function B(e, CPl. Their defining equations are, 
respectively 

(2.45) 

and 

(2.46) 

The three pair of functions just defined plus the func­
tions defined previously allow the specification of our 
solutions to the almost-Killing equation in the Kerr 
spacetime, Eq. (1.1). 

III. SOLUTION OF THE EQUATIONS 

Since the vacuum Kerr metric is Ricci-flat our equa­
tion (1. 1) admits a commutation of covariant deriva­
tives which makes it equivalent to 

where E = c - 2. 

Defining 

F"'B='\7a~", - '\7",~, J", =E'\7", vB~, 

we can write, suggestively, (3.1) as 

veF"'B =J",. 

(3.1) 

(3.2) 

(3.3) 

The divergence of the left-hand side of this equation 
vanishes which implies that the" source" J", is diver­
gence free. Since the "source" is actually the gradient 
of the divergence of the almost-Killing vector itself, 
the divergence of the almost-Killing vector is a solution 
of the four-dimensional scalar wave equation, whose 
solutions are functions already defined [Eq. (2. 13) L 
Thus, although the" source" in the above "field equa­
tion" is explicitly a functional of the solution of the 
equation, it is also a known function of Boyer- Lindquist 
coordinates, It is this fact which allows us to find the 
solutions in terms of the Teukolsky functions. It is con­
venient in deriving what follows to express Eq. (3.3) in 
terms of the operators f), f)., 0, and ~. Equation (3.3) 
is equivalent to the following set of four equations: 

(r - ia cos8) 02 f) ((r _ ia cose)2¢ 0) + (2)-112 (r _ ia COS8)-1 

x [?J+ - cote + ia sin8(r - ia COS 8)-1] ¢1 

=-J,/2, 

- (2)-1/2[~(r_ fa cOS8)]-1[!l'(t'- iacos8)2¢o] 

+ (2~)-1[f) + ~ - ~(r - ia cos8)"!] ¢! 

(r - ia coS8)-1f) ((r - ia cos8)¢ _1) 

+ (2) -1/2 (r _ ia cos 8)"3[ 1'+( r - ia cos8)2 cP oj 

=J;/2, 
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A(2Z)-1(r _ ia cosB)-2f) +((r _ ia COSB)2<Jl
O

) _ (2)"1/2 

X (r + ia COSB)-l[ 1) - cotB - ia sinB(r - ia COSB)-1]<Jl_1 

(3.3d) 

Here we have defined the scalars J 1, J m J m, and Jr;, by 

(3.3e) 

By analogy with the vector solutions of Maxwell's 
equation in flat-space (see, e. g., Morse and Fesh­
bach14), we can distinguish the following classes of solu­
tions for !;,.: 

1. If !;,. is divergenceless and if it is the gradient of 
a scalar, !;,. = \7", TJ, then TJ satisfies the scalar wave 
equation Y"" \7", TJ = 0. 

2. and 3. If !;,. is divergenceless, but not the gradient 
of a scalar, then the almost-Killing vector is the vec­
tor-potential solution to Maxwell's equations in the 
Lorentz gauge. Two linearly independent classes of 
solutions of this type will be found below. The first one 
may be thought of as generating "electric"-type fields, 
the archtype being the time like Killing vector a/at. The 
second class may be thought of as generating" mag­
netic" -type fields, the archetype being the azimuthal 
Killing vector a/ a¢. 

4. This class contains all solutions!;,. with nonzero 
divergence. 

A. Solutions in class 1 

It is most convenient to consider the projection of 
~, along the tetrad legs 1, n, m, and m, and write 

(3.4) 

Since the general solution to the scalar wave equation 
is given by TJ=ho(r)Zo(B, ¢, t) [Eq. (2.13) above], it is 
a straightforward matter to compute the gradient and 
obtain the explicit components of ~: 

~n = AZ oW+ho) /2Z = A<ToZ 01_1/2Z, 

~l =-Zo/)ho=- <TOZ011' 

~m = - (2)-1 !2ho(1jZ o)/(r + ia cosB) 

= - <TOhOQ1/[ (2)1/2 (r + ia cosB)] 

~m = - (2)-1/Zh o(ir"Z 0)/( r - ia cos B) 

= <TohoQ j[ (2)1/Z(r - ia cosB)]. 

B. Solutions in class 2 

We are looking for vector-potential solutions to 
Maxwell's equations, subject to the additional restric­
tion that they be divergenceless. Except for this last 
restriction, we can follow exactly the method of 
Chandrasekhar, which expresses the vector potential 
solution in terms of derivative operators acting on 
Teukolsky functions. Then, using gauge invariance, we 
can add the gradient of a scalar function to make the 
solution divergence free. 

The solution to the vacuum Maxwell's equations for 
4>1 and <I> _1 found by Teukolsky are given in Eq. (2. 6). 
Using these expressions in Maxwell's equations, V F0I.8 

= 0, we find that they are satisfied identically if 4>0 is 
given by 
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<Jl o = (2)-3/2(r - ia COSB)-2[X1 (rg_1 - Ah_1!a1) 

+X_1(rg1- Ah1/<T1) - iag1(cosBX_1- sinBZ_t/<T1) 

- iag_1(cosBX1 + sinB Z 1/ (T1)]' (3.6) 

If both <Jl1 and <Jl _1 are zero, one can still have non­
zero <Jl o: This is the static Coulomb solution of Maxwell's 
equations, and represents the field about a Kerr black 
hole when an infinitesimal amount of charge is added. 15 
Examination of the vacuum Maxwell's equations shows 
that this Coulomb field is given by 

One can verify by direct substitution that the vector 
potential (and almost-Killing vector) corresponding to 
the solution (3.7) is just the Killing vector a/at, 

(;ir = (A/2Z)ZOI. + nOi. + ia sinB[mOi. /(r - ia cosB) 

_m"'/(r+iacosB)](2)_1/2. (3.8) 

For the case <Jl1 * 0, we turn to the equations which 
give the field quantities <Jl 1, 4>_1' and 4>0 in terms of the 
scalars ~"' ~l' ~m' and ~m: 

<Jl1 = [B ~l - (2)1 /2/) ((r + ia cosB) ~m) l![ (2)1 /2(r + ia cosB)], 

(3.9) 

<I> _1 = - [o+(Z ~n) (2)1/2 + A/) +( (r - ia cosB) ~ml! 

[2L(r - ia cosB)], 

x [(r + ia cosB) ~ml!(2)1 12 

- (1r - cotB)[ (r - ia cosBHm]/(2)1 /2 

+ (r+ iacosB)[- 2~n - A~l/L + (2)1/2 ia sinB~m/ 

(3.10) 

(r - ia cosB) - (2)1 /2ia sinB ~;;,/(r + ia cosB) ~. (3. 11) 

The equation for <Jl1 involves only ~l and ~m while the 
equation for 4>_1 involves ~n and ~m' Following Chandra­
sekhar, we use the relations of Eqs. (2.23), (2.24), 
(2.28), and (2.29) to determine the solutions ~m ~l' ~m' 
and ~;;, from the equations for 4>1 and <Jl _1 and then use 
the equation for <Jl o to insure that the expressions for 
~n' ~l' ~m' and ~;;, determined in this way are consistent. 
The solution of Eq. (3.9) with <Jl 1 given in Eq. (2.6) 
which will give our class 2 almost-Killing vectors is 

~; = (2)1/2rh1 X_/<Tlo 

~'m = - ia cosBg_1Z 1/[(r + ia COSB)<T1]' 
(3.12) 

The class 2 solutions of Eq. (3.10) with <Jl_1 given in 
Eq. (2.6) are 

~~ = (2)_1 /2rAh_1Xt/(LIJ1), 

~~ = - ia cos Bg1Z _l/[(r - ia COSB)1J1]' (3.13) 

That these ~"s also satisfy Eq. (3.11) is verified by 
direct substitution. The primes in Eqs. (3.12) and 
(3. 13) signify that the solutions are not yet divergence­
free. In fact, their divergence can be calculated to be 

(3.14) 

In the time independent case this divergence is zero. 

Clifford Henry Taubes 1519 



                                                                                                                                    

For nonzero w, even in the flat space analog of this 
solution, this is not so. To the vector, ~' one must add 
the gradient of a scalar chosen to make the sum diver­
gence-free. To wit, one writes 

if = ~a, + 'V'" 1). (3.15) 

Equations (3. 14) and (3. 15) imply an equation for 1), 

(3.16) 

Remarkably, it is possible to use the ladder relations 
to guess the solution of (3.16), viz., 

(3.17) 

That this is correct is most easily checked by using the 
scalar wave equation written in terms of the operators 
D, f)., B', and 1)+: 

Y'a 'V'" 1) = - L, -llfF t:>/J + 2iwr + (1)+ - cote)1J - 2aw cose)1). 

(3.18) 
So, the complete class 2 solution is 

~n= ~(2L,)-1{(2)1/2rh_1X1/a1_ i(2)-1/2 w-l 

x(a1h_1 X_I + a1h1Xl + 2i[(y2 + a2)w - amjg_1X1/ ~n, 

~! = (2)1/2rlzlX_1ia1 + i(2)-1 / 2w-1{al lz_1X _1 + a1 1z1X 1 

- 2i[ (y2 + ( 2)w - alii k1X_1/~} 
(3.19) 

~m ={ - ia cosBg_1Z d a1 - (2i W)-l [a1g1Z 1 

- a1g_1Z _1 + 2 (til / sine - aw sine).>:'_lXdt/(r + ia cose), 

~;;. ={ - ia cosegl Z _da1 - (2iw)-1[ a1g1Z 1 - a1g_1Z_1 

- 2(111 isine - aw sine)g1X _lJt /(Y - ia cose). 

C. Solutions of class 2 when w = 0 

A note of explanation must be added concerning the 
explicit factor of (W)-1 in the expression for the scalar 
1), Eq. (3.17). When w is zero 151 and 15_1 are equal to 
110 and Xl and X_1 are equal to Zoo For nonzero w, .>:1 
and g-1 will be equal to 110 plus a term proportional to 
Wi one can write as definitions 

(3.20) 

By substituting these expressions for .ii1 and g-l in Eq. 
(2.26) and its complex conjugate respectively and noting 
that 

(3.21) 

we derive the differential equations satisfied by 1<1 and 
lc -1: 

(j)+~D +2iwY- ''-! - 2)k1 =2i~h1/a1 + (AI +2 - d!)ho/w, 

W + ~f) + 2iwr - A1 - 2)" _1 = - 2i~h_1/a1 + (AI + 2 - c?o)ho/ w. 

(3.22) 

Adding these two equations gives 

(/J + t:>/J + 2/ W1" - A1 - 2) (k1 + k _1) 

= - 2it:.(h1 - h_1)/ al + 2(Al + 2 - ifo)hoi w. (3.23) 

Breuer13 showed that the eigenvalues lA + 2 and c?o satisfy 
the relation 

(3.24) 
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Then the right-hand side of Eq. (3.23) may be expanded 
as a power series in w. Using Eqs. (2.33) and (2.27) 
we get 

_ 2i~ (~+ imll _ ~+ iam) ~_~ + O(w). 
Jy ~ OY ~ au ao (3.25) 

The terms in this expression zeroth order in w cancel, 
allowing one to write Eq. (3.23) as 

W+ D/) + 2iwy - A1 - 2)(/(1 + "-1) = O(w). (3.26) 

This means that we can redefine III and k_l by the 
expression 

III +" _1 = Cl'lho + wh, 

where Cl'1 is a constant independent of w. 

In exact analogy we can write as definitions 

Xl =Zu + wU1, X_I =Zu + ~'U_l 

(3.27) 

(3.28) 

and show USing Eqs. (2,28), (2,29), (2.31), (2.27), 
and (3.24), that we can redefine U1 and U_1 by 

(3.29) 

where Cl'2 is also a constant independent of w. In terms 
of these new functions we may write Eq. (3.17) as 

'T),,-,lIoZo[-i(2)112 W-i(Cl'l + Cl'2)(2)-llZj 

(3.30) 

When the gradient of 'T) is taken the first term in Eq. 
(3.30) generates the class 1 solution, Eq. (3.5) So it 
can be ignored. The relevant portion of the scalar y) 

does indeed become zero when w is zero. 

A final note about the solutions given by Eq. (3. 19): 
If the flat-space analog of these solutions are consid­
ered with w = 0, then the functions hom and 1l~1 are 

ho = yn, 11~1 = II1'n- l [n(11 + 1) ]"1/2. 

The class 2 solutions are 

(2)I/Zynynm (' 
~ = 0;+T)JL at 

(3.31) 

which is the vector potential which generates the Il-pole 
static electric fields. 

D. Solutions in class (3) 

For a given solution to Eq. (3,3) with" c< = 0 for the 
field tensor F 0<8, a second linearly independent solution 
can be generated by taking the dual of F 0<130 In terms 
of the Newman-Penrose scalars, 4>1> <P-t. and 4>0, the 
dual solutions 4>1, 1>~I' 4>~ are gotten from the originals 
by multiplication by - i. 16 If we find a vector solution 
to Eqs, (3.9) and (3.10) with 4>[,4>_1 given by Eq, (2,6) 
and <1>0 by Eq. (3,6), a second linearly independent solu­
tion must exist that generates the dual set, The tensor 
F "a is determined by six functions: 4> t. 4>_1> 4>0, and 
;'i?t. ;'i?_b ;'i?o. The barred scalars are defined by switching 
Iil" and iii'" in Eq. (2.5), not by taking the complex 
conjugate of the unbarred scalars. The two procedures 
are the same only for a real F "II and ~ ". The duals of 
the barred scalars are gotten from the unbarred ones 
by multiplication by + i, Suppose ~" is a solution to 
Eq. (1.1) from our class 2, then ~'" generates a set of 
scalars, <Pt,4>_b4>O, ;'i?1, ;'i?_b and $0, and-i~"gen-
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erates - icl>t. - icl>_t. - icl>o, - icl>t. - icl>_t. and - i¥o. 
The linearly independent vector solution to Eqs. (3.9) 
and (3.10) which generates the correct dual solutions 
to cl>1 and cl>_1 given by Eq. (2.6) and cl>o from Eq. (3.6) 
was first derived by Chandrasekhar3 in the context of 
solving for the vector potential solutions to the vacuum 
Maxwell equations. In our notation, the class 3 solu­
tions are 

~. = ah_l t.(cosOXI + sinOZI/ 01)/[ (2)1 /2::: 011, 
~z = a (2)1/2hl (cos OX_1 - sinOZ_t! o 1)/0 t. 

~'" = + iZ I (rg _I - Ilh_/ol )/[ (r + ia cos 0)011, 

~iij= +iZ_I (lXl- t.Jzt/ol)/[(r- iacosO)od. 

(3.33) 

These also satisfy Eq. (3.11) for cl>o. Furthermore, 
the 1;'s of Eq. (3.33) are already divergenceless, so 
they are almost- Killing solutions. 

In his paper, 3 Chandrasekhar derives the most gen­
eral solution to our Eqs. (3. 9) and (3. 10) with J", = O. 
His general solution is expressed as a sum of two parts, 
the first being our class 3 solution of Eq. (3.33) and 
the second is expressed in terms of two functions he 
calls P+ and P_ which are constrained by one equation. 
If two solutions to Eqs. (3.9) and (3.10) differ by the 
gradient of a scalar then Chandrasekhar's functions p. 
and P_ will be equal. For the solutions of class 2 and 
class 3 this is not the case. 

In the time independent case XI and X_I are equal to 
the (n, m) spherical harmonic Y8"'(B, 1;) and Z+I and Z_I 
are equal to the (n, /11) spin weight + 1 and - 1 spherical 
harmonics Yi'" and Y~r, respectively. The class 3 solu­
tion containing only the (1, 0) angular functions is the 
Killing vector (3/3271)1/2(alo1> +2a%t). The Mlnkowski 
space, time independent solutions of Eq. (3.33) con­
taining the (11, m) spherical harmonic generate the static 
n-pole magnetic fields. 

E. Solutions in class 4: Formulas for <P I and <P _ I 

When the divergence of the almost- Killing vector is 
not required to be zero then this divergence must be a 
solution to the scalar wave equation, 

Then the components of J cy. [the right- hand side of 
Eq. (3.3)1 are: 

J. = EboOoZo/_t/2:::, 

Jz = - EOoZo/1> 

J", = - EoOlzOQI[(2) 1/2 (r + ia cos 0) 1, 

J;;; = EoohoQ-t![ (2)1/2 (r - ia cos O)l. 

(3.34) 

Teukolsky derived decoupled equations for the field 
quantities cl>1 and cl> -1 even in the presence of sourceso 1,2 
These equations are second order differential equations 
for the field quantities cl>1 and cl>_1 with source terms 
denoted PI and P_I. The equation for cl>1 when explicitly 
written with the operators (), D., fJ, and rr is 

- (:::rl[D()'bo +2iwr + B"(~'- cotO) - 2aw cosOl cl>1 = PI. 

(3 0 36) 

The source term in this equation is 
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PI = - [(r + ia cosBrl D (r + ia cosO) + 2 (r - ia cosOrllJ", 

- (2rl / 2 (r + ia cos erl[a - 2ia sinO(r - ia cosorllJz 0 

(3.37) 

When the expression for Jm and Jz from Eq. (3.35) are 
substituted into Eq. (3 037), this equation reduces to 

(3.38) 

The equation for cl> _I is simplest when expressed as 
an equation for a function n defined by the relation 

cl>_I=Ml/[2(r-iacosO)21. (3 0 39) 

The equation for n is 

- bo(nrl[D+D bo - 2iwr + fr(e-- cote) + 2aw cosol n = P_I , 

(3.40) 

where P'I is 

P_I = - (1' - ia COSO)2{- (2rl /2 (1' - ia cosrl[::: -lir'::: 

- 2ia sinO(r - ia cos orllJ. + [bo(2:::rl fj+ 

+ 3bo(nrl(r- iacosOrllJiij}o 

Using Eq, (3,35) this becomes 

P_ I =EOobo(2rI/ 2::;-I(- hoQ_1 + ia sinO/_IZo), 

(3.41) 

(3.42) 

The task now is to use the ladder relations, and the 
differential equations satisfied by the functions it. /-1> 
lto and QI> Q_I> and Zo [Eqs. (2 0 34)- (2. 40)1 to determine 
the solutions to Eqso (3 036) and (3.40)0 It is quite sur­
prising that the two equations turn out to have very 
simple solutions! The solution of Eqo (3 036) is 

<PI =akf,Q/[(2)'/2iw 1 (3.43) 

as can be verified by direct substitutiono Similarly, 
the solution of Eqo (3 040) is 

(3.44) 

One should notice that the solutions of the Izomogeneous 
differential equations [Eq. (3,36) and (3.40) with 1'1 
and T_, set equal to 01 

cl>?"m= ltlZt. 

nhom =lt_1z_1> 
(3.45) 

(3.46) 

have a form remarkably similar to Eqso (3.43) and 
(3.44). In fact the only difference is the substitutions 

(3.47) 

F. Solutions in class 4: The limit w :, 0 

When w = 0, /1 is identically ht. f_! is h_1> Q I is Z I> 

and Q_1 is Z_I. Therefore-except for the factor of 
(wj"I_ Eqs. (3.43) and (3.44) become identical to 
Eqs. (3.45) and (3.46). On the other hand, the source 
terms J., J" J"" and Jrn are nonzero even when w = O. 
To resolve this apparent paradox we must consider the 
approach to zero frequency with somewhat greater care: 
Since the zero frequency limit of /1 is lz 1> purely as a 
formal definition, /1 may be written as 

fl=lzl +wb l • 

Equation (3. 20) above defined !, -I by 

g -I = ho + wk _I' 
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If both sides of Eq. (3.40) are acted on by the operator 
[), the resulting expression is 

(3.50) 

Rearranging this expression and using Eqs. (3.24) and 
(2.27) we find that to order w, 

(3.51) 

The function bt. for all values of the frequency satis­
fies an inhomogeneous differential equation de:ived by 
substituting Eq. (3 048) into Eq. (2.39), which is the 
e~uation satisfied by ft. and making use of Eq. (2.12), 
VIZ. , 

00+ Mi + 2iwrbi - 05bi == - 2iholoo + (o~ - Ai - 2) hJw. 

(3.52) 

Similarly, by making the formal definitions 

f.i==h.i+wb.1o Qi==Zi+wV1o Q.i==Z.i+wV.i 

(3 0 53) 

differential equations for the new functions b.1o Vt. 
and V.i can be derived in like manner: 

(D+!) 6.- 2iwr- 06) b.1 == 2ih%o + (o~- AI- 2)h_Jw, 

[/l'(/),+ - cote) - 2aw cos8 + u51 Vi 

=2aw sin8Zo/uo + (Ai + 2- 05) zJw, 

[/)'+(8'- cot8) + 2aw cos8 + 061 V_I 

= 2aw sin8Zo/00 + (Ai + 2 - U5) Z_JWo (3.54) 

In terms of these new functions the solutions to Eqs. 
(3 036) and (3.40) for the functions <PI and n are 

<Pi == u5d2)"i/2(iw)"1[hiZl + W (b iZ 1 + hi V1) + w2bi VIl, 

\1 == u6d2)"1/2 (iw)"l[hlZI + W (b_1Z_1 + h_i V_i) + w2b_i V_ilo 

(3.55) 

Now it is apparent that the term proportional to (w)"l 
is, in both cases, the solution to the respective homo­
geneous differential equations and hence it may be 
dropped for small w when considering the class 4 solu­
tions. The functions <Pi and <P_l may then be expressed 
in terms of the functions b10 bot, Z10 and Z_i. 

G. Solutions in class 4: rs obtained from the ¢'s 

In order to prove that the solutions given for <P 1 and 
<P_l are in fact consistent solutions of Eqo (3 03) with 
the specified source terms, the field function <Po should 
be independent of whether it is computed by quadratures 
from anyone of Eqs. (3.3a), (3.3b), (3.3c), or (3.3d)0 
To compute <Po from quadratures we make use of the 
relationships between the functions ft. f-t. ho and 
QIo Q-h Zo as expressed by Eqs. (2.34)- (2. 36) and 
Eqs. (2038)- (2. 40), respectively. That the solutions 
presented for <PI and <P.I are consistent is verified. 
The function <Po has the form: 

<Po == ood2wi)-1(r - ia cos8r2 
{[ (oor + iwr2/00) Ito - 6.f_1] Zo 

- iaho[ (uo cos 8 - aw cos2 8/00) Zo + sin8Q!l}. 

(3. 56) 

Using Eqs. (3.9), (3 010), and (3 011) we solve by 
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quadratures for the scalars ~~, ~;, ~~, and ~~, these 
solutions being 

~~== Arf_IEoOZo/(2~iw), 

~I =rf1EuOZo/ (iw), 

~~ = - ia cos 8uoEhoQJ[ (2)1/2 (iw) (r + ia cosB) 1, (3 057) 

~~==- iacos8uoEhoQ_J[(2)1/2(iw)(r- iacos8)l. 

The primes on the ;'s signify that the solutions are not 
yet solutions to the almost- Killing equation [Eq, (1.1) I 
because we must go full circle and insure that the 
divergence of the ~'s is given by Eqo (3.34)0 The diver­
gence of the vector given by Eq. (3, 57) is 

(3.58) 

In order to make a self-consistent solution to the al­
most- Killing equation, the gauge invarianc e of the 
"field tensor" defined in Eqo (3 02) must be used to add 
to the vector;' the gradient of a scalar function so that 
the divergence of the sum is equal to X of Eq. (3.34), 
To this end, set 

(3.59) 

The Laplacian operator when acting on the scalar T) 

must equal (1- 3E) hoZo in order for ~ to be a solution 
of Eq. (1. 1). Thus the inhomogeneous equation for T) 

is 

- (D+6.[) +2iwr+ (ij"+-cot8);;-2awcos8)T) 

= (1 - 3f) ~hoZo, 

The solution to this equation is 

T)=- (1-3E)(j(r)Zo(B,</>,t)+a2ho(r)A(8,<t>,t)1 (3.61) 

as can be verified by direct substitution of Eq. (3.61) 
into Eq. (3. 60) and making use of the relations of Eqs, 
(2.41) and (2.42). The complete class 4 solutions are 
given by 

~"= 6.(n)"i[11_1EooZoI(iw) 

- (1-3w)(O+jZo+a2uof_tA)1, 

~I = [111EUOZO/(iw) + (1- 3E)([)j Z o + a2oO/1 A)l, 

~m = [- ia COS800EhoQ1/ (iw) 

+ (1- 3E)(joOQ1 +a2hoil"A)]I[(2)1/2(r+iacos8)l, 

~;;; == [- ia cos 800EhoQ_J (iw) 

+ (1- 3E)(-juoQ_1 +a2hoB"+A)]I[(2)1/2(r- iacos8)l. 

(3.62) 

In order to compute the w == 0 limit from the solution 
in this form it is necessary again to explore the 
composition of the term proportional to (w)"l. This is 
done by using the functions defined in Eqs. (3. 20), k~l; 
(3.28), U,.i; (3.48), It; (3.53), f-1 and V"i' Substitution 
of these functions into Eqs, (3.57), which gives the 
terms proportional to (wrt, gives for the ~"s: 

~~ = EUo[A(26)"ir h_1X111 (iw) 

+ (i2Lr1EAr(b_1X j - h_1U j - wb_1U1), 

~I == Eoo(rh1X_1)/ (iw) 

- iEOor(b iX_ 1- h1U_ j - wb1U_1), 
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~~ = Eao (- ia cos Bg -lZ+t![ (2)1/2 (r + ia COS B) iw] 

- iEao(- iacosB)(g_l V1- k_1Z 1- wk_l V1)/ 

X [ (2) 1/2 (r + ia COS B)], 

~~ = Eao (- ia CosBglZ_l)/[ (2)1 /2 (r - ia cosB)iw] 

- iEao (- ia cosB) (gl V_1 - k 1Z_1 - wkl V_1)! 

X [(2)1/2 (r - ia cosB)], (3,63) 

The terms in Eq, (3. 63) proportional to (w r 1 that re­
main are proportional to the scalars of Eqs. (3.12) and 
(3,13), the constant of proportionality being - iECJoCJI 
[(2)1/2w]. The scalars of Eqs. (3.12) and (3.13) were 
defined in connection with the divergence-free class 2 
solution. Thus if it is necessary, these terms in Eq. 
(3.63) proportional to (wr1 can be dropped from Eq, 
(3,62) if the scalar defined in Eq. (3. 17) multiplied 
by the constant - i€CJOCJ1/[(2)1/2w] is also dropped from 
Eq. (3.62) so that the divergence of what remains is 
still equal to X of Eq. (3.34). For the sake of complete­
ness, we present the time independent class 4 solutions 
which were derived after a lengthy calculation: 

~n= t.(nrl[n{n + 1) 1-1 /2{dr2h_1Yom - 2iamr{h_1 Tnm 

- [0 ·w/ (n(n + 1))1 / 2_ h_1 (n{n + 1»] Yom)] 

+ [n{n + 1)]1/2[{1- E)OJ - ED·Sl Yom 

+ n (n + 1) a2h_1 [(1 - E) A nm - EBnml}, 

~l = [n(n + 1) ]-1/2{_ dr2h1 YQm - 2iamr{h1 Tnm 

- [Ow/ (n (n + 1 »)1/2 - ht! (n (n +1»)] Yom)] 

- [n{n+l)]1/2[(1-E)Oj-EDs] Yom 

- n(n + 1) a2h1[ (1- E) Anm - EBnml}; 

~m = In (n + 1) ]"1/2 (r + ia COSBrl (2r1 /2{E{a2 COS2 BhO Yjm 

+ 2iam(ia COS B) [ho[1iTnm/ (n {n + 1»1/2 + Yjm/ (n (n + 1»)] 

- w yqm]} - n (n + 1)[ (1 - E)j - ES] Yjm 

- [n(n + 1)j1/2a2ho[{1- E) /rAnm - E1iBnm]}, 

~;;; = [n (n + 1) ]"1/2{r - ia coser1 (2r1/ 2{_ E {a2 cos2Bho Y~r 

- 2iam{iacosB)[ho[- rrTnm/(n{n + 1»)1/2 + Y~r/(n{n + 1»)] 

- w r.r]} + [{1- E)j - ES] Y~T 

- [n{n + 1)]1 /2a2ho[ (1 - E) a·A nm - E1i+Bnm]}. 

(3.64) 

We can characterize the solutions of class 4 by 
the order of the angular function Zo with which we have 
expressed the divergence X [of Eq, (3,34)] of the class 
4 solutions, For the time independent solutions, the 
(n = 0, m = 0) solution can, at least, be computed 
analytically, It is 

~ <0, 0) = + { (47T)1/2(3)ol [~+ 221l + 411f!:.=.Ml 

2M{2M
2-a2») ~J1.. + (a 2

SinBCOSe).l..} 
+ (.w2 - a2)1/2 t. ~ ar ~ a e 

(3,65) 

IV. DISCUSSION AND EXAMPLE 

How do we know that we have found "all" the solutions 

1523 J. Math Phys., Vol. 19, No.7, July 1978 

of the original Eq. (1. 1)? A strong indication (though 
not a rigorous proof) is obtained by solving Eq, (1.1) in 
flat spacetime. These flat space solutions (which are 
presented in another context for the time independent 
case in Morse and Feshbach14) can be proven to be a 
complete set of vector solutions. This follows from the 
properties of the spin-weight spherical harmonics. Our 
Kerr solutions are in one to one correspondence with 
these as can be seen by simply setting a and M equal 
to zero in our solutions. 

Finally, it is interesting to work out one definite 
example of the way that the AKE can be used to extend 
a vector field in from infinity: We can compute those 
almost- Killing vectors which are also asymptotic 
Killing vectors in the sense of Eq, (1.3). (These 
asymptotic Killing vectors are by no means uniquely 
defined because to any asymptotic Killing vector one 
can add a solution to the almost- Killing equation which 
vanishes as r gets very large,) In Minkowski space, 
there are ten independent Killing vectors, the genera­
tors of translations, of rotations and of Lorentz boosts. 
In this presentation of the asymptotic Killing vector 
solutions to the AKE, the axis of symmetry of the black 
hole will be taken to be the z axis, 

The Minkowski space translation Killing vectors and 
the almost- Killing vectors which approach them 
asymptotically are 

1... a 
at . at ' 

:z: (CO~Bt.):r ((r-·i sinB
) aGe, 

G (-E. {h1,! ('3inBco~~) l. + (hfi,lCOSBCOScb) a 
ax : dr 0 ~ Br ~ B B 

_h~,lsinBsin1:> {[(l- 2~11)/(t.Sin2e)J a~ 

- (2:~1') :t }, 
l.: .!!... (h6' 1) (Sine sin1:> t.) l. + (h6'l cos B sins?) a 
By dr ~ Br ~ aB 

+ h~,l sinBcos1:> {[(1 -~Mr)/(t.sin2B) ] /1:> 

- (2:~r) aat }, (4.1) 

where the radial function h6,l is the solution to Eq. 
(2.15) with (n, m) = (1,1), 

hij,l = (r2 - m2 + a2)1/2 cos{(a/o) In[ (r - r_)/(r _ r.)] 

- tan-1[a/(r- ,'V1)]}, 

0=2{Af!- a2)1/2, r.=j\l/± 0/2. (4.2) 

The generators of the rotations in Minkowski space are 
the vectors 

o 
Lz= a¢ , 

Lx= (sin¢) :0 + (cotBcos¢) a~ , 

a a 
Ly = (cos¢) ae - (cotB sln¢) a1:> . 

Clifford Henry Taubes 

(4,3) 

1523 



                                                                                                                                    

Alternately, these Killing vectors can be used to define 
the complex Killing vectors by 

L+= (2r1/ 2 (L y +iLx ) 

= exp(i¢)(r /2)[ (1 + cose) m + (1 - cose) m], 

L_= (2r l / 2 (L y - iLx) 

= exp(- i¢)(r/2) [(1- cose)m + (1 + cose) mL (4.4) 

The solutions to the almost- Killing equation asymptoti­
cally equal to L+, L_, and L z are: 

L a 
z: arjJ , 

L . _ ia(2r3 / 2 (!!:.... (hi, I) _ ial!.k.:.) 
+ fir 0 Ll. 

x Ll..6-1 exp(i¢) sine(cose + 1) 1 

( 
d iah1

, I) 
+ia(2rl / 2 dr(116'1)+~ exp(icp)sine(l-cos)n 

+ (cose + 1) (1' - ia coser{rh~'l - Ll. (d~ (116,1) - ia~)/2J 

exp(i¢)m + (1- cose)(r+ ia cose)-l [,vh~'l_ Ll.( ~(h6,l) 
111' 

+ ia~~'!)/2 ] Iii 

L_~ _ ia(2r3 / 2 (~(hl,!) + iah6-
1
) 

rlr 0 Ll. 

x Ll..6-1 exp(- icp) sine(l- cose) 1 

( 
d ial1l,l) 

+ia(2rl / 2 dr(h6,1)-~ exp(-i¢)sine(1+cose)n 

+ (1 + cose)(r - ia cosert 
[ rh6'l - Ll. (:1' (h6,1) 

+ iaJ~5'1)/ 2J exp(-i¢)m 

+ (1 + cos e) (1' + ia cos er t 
[ rh6'1 - Ll. Ctr (176,1) 

_ ia~6'1)/2J exp(-idJ)m, 

The Killing vectors are the generators of Lorentz 
boosts in Minkowski space are the vectors 

M = ziJ + iZ. 
z at az' 

M va + ta 
y= -at oy 0 

(4.5) 

The boost Killing vectors can be expressed in a more 
convenient form in order to compare with the solutions 
to the almost- Killing equation which approach them for 
large values of 1': 

Mz= (1' + t) cose2-ll + (1' - t) cosen - t sine(2rl /2(m + m), 

M+ = (2rl /2(Mx + iMy) 

= (2)"3/2(1' + t) sineexp(i¢)l + (2rl /2(r- t) exp{i<fJ) sinen 
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+ (2)"1 t(l + cose) exp{i<jJ) m + (2)"1/ (cost! - 1) 

xexp(idJ) iii, 

M_= (2rl / 2(Mx - iMy) 

= (2)"3/2(1' + t) sint! exp(- icp) 1 + (2)"1/2(1'_1) 

x exp (- icp) sinen + (2)"lt(cose - 1) exp(- ir/J) m 

+ (2rlt(cose + 1) exp(- icp) iii. 

(4.7) 

In Eqs. (4.7) and (4.4) the tetrad vectors are the 
Minkowski space analogs of the tetrad given in Eq. (2.3) 
obtained by setting a = }'vI = 0 in Eq. (2.3). [In all other 
equations in this paper the tetrad that is referred to is 
that of Eq. (2.3). 1 The solutions to the almost Killing 
equation which are asymptotically equal to lIz, .11+, 
and JI_ are: 

Mz: Ll.(2.6r1 cose[1'+t-Jl(1'2-a2)/Ll.ll 

+ cose[r - t - Jl(r2 - a 2)/ Ll.l n 

- (2)"1/2(1' _ ia coserl(r - J1) sine(t - ia cose) m 

- (2)"1/2(1' + ia coserl (1' - /11) sine(t + ia cose) iii, 

M ~ Ll.(2r3 / 2.6- t (21' + t) - (h5,1) -~ - -
[ ( 

II ialt I, 1 ) (1'2 + ( 2)1I6' 1 

+ rlr Ll. Ll. 

+iaJIC~"(b)- i:b)] sineexp(idJ)l 

+ (2) -1/2 [(21' _ t) (~~ (h6' I) + ial~' 1 ) -~~~~ 
Ll. 

- iaM C~r (b) + i:b)] sine exp(idJ) n 

+ (2rl (r - ia coserl[th6' 1 - fa (1 + cose) h6' 1 

+ iaMb 1 (cose + 1) exp(idl) m 

+ iaMb l(eose - 1) exp(ir/J) Iii, 

(
d iahl,l) (r2+a 2)h6,1 

:11. ; Ll.(2r3 /2.6 -I[ (21' + f) dr (hJ' I) + ~ - Ll. --

- iaM U: (b) + {c£~)J sine exp(- i<jJ) 1 

+ (2)1/2 [(21' - t) U~" (116,1) _ ial~) -

+ia;u(;~ (b)- i~)J sineexp(-icp)n 

- irdlb l(eose - 1) exp(- irjJ) m 

(1'2 ~1z6,l 

Ll. 

- iaMb l(cose + 1) exp(- icfJ) m, (4.8) 

where the radial function /) (r) satisfies the inhomo­
geneous differential equation 

( 
d d ([2 2) b ( ") 4rhl' 1 -Ll.-+-- 1 = . 

dr dr Ll. Ll. 
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Nonuniqueness in the inverse scattering problem 
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The inverse scattering problem consists of determining the functional form of a scattering potential given 
the scattering matrix A (kos. koso) for all scattering directions s and one or more values of the wave vector 
koso· In this paper it is shown that within the framework of the first Born approximation the inverse 
scattering problem as defined above does not possess a unique solution. It is also shown that within the 
framework of exact (potential) scattering theory the problem does not admit a unique solution given only 
the scattering matrix for a single fixed value of the wave vector koso as data. The final section in the 
paper considers scattering experiments using incident fields other than plane waves and where knowledge 
of the scattered field at all points exterior to the scattering volume is available as data. It is found that, 
within the framework of exact scattering theory, the data generated by any single such experiment is not 
sufficient to uniquely specify the scattering potential while. within the framework of the first Born 
approximation, the data generated by any finite number of such experiments is not sufficient to uniquely 
specify the potential. 

1. INTRODUCTION 

A problem of considerable practical importance in 
optics, acoustics, and quantum mechanics is that of 
determining the structure of an unknown scattering 
potential from scattering data. The scattering data 
consists usually of either the intensity or the complex 
amplitude of the scattered field in the wave zone of the 
scatterer for cases when the field incident to the 
scatterer is a unit amplitude plane wave having a 
specified wavenumber ko and direction of propagation 
so' The intensity of the scattered field in the wave zone 
is usually termed the differential cross section dol dO 
and is related to the complex amplitude of the scattered 
field according to the equation 

(1) 

The argument of the complex amplitude indicates its 
dependence on the wavevector koSo of the incident plane 
wave and of the direction s at which it is measured. 

In this paper we shall be concerned only with cases 
where the complex amplitude (or scattering matrix) 
A (kos, koSo) is available as data. This quantity can be 
measured directly in optical scattering experiments l

-
3 

or it can be analytically deduced from the differential 
cross section for certain classes of scattering po­
tentials. 4 Depending on the number of scattering ex­
periments performed A(kos, koSo) will be determined for 
one or more values of koSo and for some set of scatter­
ing directions s, The inverse scattering problem then 
consists of using this data to determine the functional 
form of the scattering potential V(r), We shall assume 
throughout this paper that the scatterer is localized 
within a finite scattering volume T and that the potential 
V(r) is at least piecewise continuous in T. 

It is known5 that if the scattering matrix A (kos, koSo) 
is specified for fixed ko and all values of So and s then 
unique determination of the scattering potential is 
possible. Such a determination can be performed using 
an iterative algorithm presented in Ref. 5 or, in the 
case of weakly scattering potentials, by means of a 
procedure presented in Ref. 6 and further developed in 

Refs. 7 -9. Another case known to yield a unique solu­
tion occurs when the scattering potential V(r) is either 
independent of the wavenumber ko or depends on this 
quantity in a known way. In such situations a unique 
solution is obtained when A(kos ,koso) is specified for 
a fixed incident field direction of propagation So and for 
all values of the wavenumber ko and all scattering 
angles s. 5 

It follows from symmetry that in cases where the 
scattering potential is spherically symmetric the scat­
tering matrix is a function only of ko and the angle be­
tween the two unit vectors s and so' Consequently, for 
such cases the scattering matrix need be specified only 
for a single arbitrary value of koSo and all scattering 
directions s in order to uniquely specify the scattering 
potential. 10 Thus, by use of algorithms presented in 
the literature501o a spherically symmetric scattering 
potential can be uniquely determined from scattering 
data obtained in a single experiment. 

In this paper we present the results of an investigation 
into the problem of uniquely determining the structure 
of nonspherically symmetric scattering potentials from 
scattering data obtained in a single, or possibly finite 
number of experiments. This investigation was moti­
vated primarily by statements appearing in the litera­
turell - 13 to the effect that this should be possible at 
least within the framework of the Born approximation. 
Ineed, an algorithm has actually been devised12

,13 for 
determining the functional form of a weak scattering 
potential from a specification of the scattering matrix 
for a single fixed value of koSo and all values of s. 

In Sec. 2 we address the uniqueness question for in­
verse scattering within the first Born approximation. 
The scattering data are assumed to consist of the 
scattering matrix given for all scattering directions s 
and for any prespecified finite set of values of koSo. It 
is shown that, with the exception of spherically sym­
metric scattering potentials, such data are not suf­
ficient to uniquely specify the scattering potential. In­
deed, in analogy to the nonradiating distributions (see 
Footnote 14) known to exist in radiation (source) pro­
blems, it is shown that an infinite number of scattering 
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potentials can be determined all of which are localized 
within any specified scattering volume and all of which 
produce scattering matrices which, within the Born 
approximation, vanish identically for all values of s 
and for any finite number of specified values of koso. 14 

Due to the linearity of the first Born approximation it 
follows that anyone of these potentials can be added 
to any other potential without changing the scattering 
data observed in any finite number of experiments. 
Determination of the scattering potential from a finite 
number of experiments is thus nonunique within the 
first Born approximation unless auxillary informa­
tion is available to rule out the presence of such "non­
scattering" potentials within the scattering volume. 

In Sec. 3 we treat the inverse scattering problem 
within the framework of exact scattering theory. A 
theorem is established which shows essentially that 
knowledge of the field everywhere outside a localized 
scattering potential is not sufficient to uniquely specify 
the field within the scattering volume. It follows that 
the scattering potential can not be uniquely specified 
from scattering data obtained in any single experiment 
and, in particular, from the scattering matrix given for 
a single fixed value of koSo and all scattering directions 
s. 

The analysis presented in Secs. 2 and 3 assumes that 
only incident plane wave fields are used in a scattering 
experiment and that the data obtained in any such ex­
periment is limited to the scattering matrix A(kos, koso). 
In Sec. 4 we examine the impact on inverse scattering 
of using other types of incident waves and of allowing 
more extensive field measurements to be performed. 
It is shown that the nonuniqueness properties of inverse 
scattering within the Born approximation determined 
in Sec. 2 hold for arbitrary incident waves which are 
expressable as a finite sum of plane wave fields. In 
addition, the nonuniqueness result established in Sec. 
3 for inverse scattering within the framework of exact 
scattering theory is shown to be applicable to cases 
where the incident field to the scatterer is entirely 
arbitrary. 

It is also shown in Sec. 4 that knowledge of the scat­
tered field in the wave zone (i. e., as kor- 00) is com­
pletely equivalent to knowledge of the scattered field 
throughout all space exterior to the scattering volume. 
It follows that for the case of incident plane waves the 
scattering matrix is completely equivalent to knowledge 
of the scattered field throughout all space exterior to 
the scattering volume. Consequently, the nonuniqueness 
properties established in Secs. 2 and 3 remain valid 
even if one is allowed unlimited measurements of the 
field exterior to the scattering volume. 

2. INVERSE SCATTERING WITHIN THE 
BORN APPROXIMATION 

The scattering of a scalar wavefunction I/J(r, koSo) by 
a potential V(r) is described by the reduced wave 
equationl5 

(2) 
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The argument koSo is included in the wavefunction I/J to 
indicate its dependence on the wave vector of the in­
cident plane wave exp(ikoso 0 r). For sufficiently weak 
scattering potentials the wavefunction !jJ is given approx­
imately by the first Born approximation 

i/J(r, koSo)'" exp(ikoso• r) - 4~ i rfr' V(r') exp(ikoso' r') 

x exp(ikol r - r' I) 
1 r - r'l ' 

(3) 

where T denotes the scattering volume which is assumed 
to be finite. In the wave zone (i.e., as kor- 00) Eq. 
(3) yields the following expression for I/J: 

r( )_ (. .) l.. ( )exP(ikor) 
1jJ r, koSo exp lkoso r - 4 AB kos, koSo . (4) 

1i r 

Here AB (kos, koSo) denotes the scattering matrix in the 
Born approximation and is given by 

AB (kos, koSo) = h d 3r' V(r') exp(ikoso' r') exp(- ikos • r'). 

(5) 

The Born approximation to the scattering matrix as 
given in Eq. (5) is intimately related to the threefold 
Fourier transform V(k) of the scattering potential V(r): 

V(k)=j rfrV(r)exp(-ik ·r). (6) 
T 

On comparing Eq. (5) with Eq. (6) we conclude that 

A B (kos , koSo) = V[ko(S - so)], 

which implies that the scattering matrix determines 
V(k) for all those frequency vectors k given by 

(7) 

k= ko(s - so), (8) 

For a given scattering experiment using an incident 
plane wave of fixed wave vector koSo the values of k 
satisfying Eq, (8) lie on the surface defined by 

k o k=k2 =2kg(1-so ·s). (9) 

It follows that if a (theoretically infinite) number of ex­
periments were to be performed all using incident plane 
waves of fixed wavenumber ko but varying directions of 
propagation So the totality of scattering data so obtained 
allows V(k) to be determined for all values of k lying 
within a sphere of radius 2ko• 6 A band-limited approxi­
mation Vb1(r) to the scattering potential is then im­
mediately achievable by means of the relationship 

Vb1(r) = (2!)3j d3k V (k)exp(ik 0 r), (10) 
k"2ko 

where the Fourier amplitude V(k) is that which is re­
constructed from the scattering matrix. 

Because the scattering potential V(r) is assumed to 
be piecewise continuous and is localized within the finite 
volume T its Fourier transform V(k) is an entire 
analytic function of the three Cartesian components 
kx' ky' k z of the wave vector k. 16 It follows from a 
theoreml7 in analytic function theory that V(k) is unique­
ly determined for all values of k by its value within 
any finite volume element in k space. The extension of 
V(k) from its value over a finite volume element to all 
of k space can, in principle, be performed by analytic 
continuation ,17 Because the set of scattering experi-
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ments discussed above yields V(k) for all values of k 
tying within the sphere ,< '~ 2"0 the theorem alluded to 
above implies that V(k) is completely determined for 
all values of k by the scattering data. The complete 
reconstruction of V(k) could, in principle, be per­
formed using analytic continuation although a much 
more satisfactory (and realistic) approach would be 
to use the algorithm presented in Ref. 5. 

The discussion presented above indicates that the key 
to unique determination of the scattering potential is to 
perform a sufficient number of scattering experiments 
to lead to a specification of V(k) over any finite 1'0111111 e 
element in k space. Any single scattering experiment 
leads only to a specification of V(k) over the surface 
defined in Eq. (9). To extend this su rface to a volume 
requires an infinite number of experiments to be per­
formed. One such series of experiments is that dis­
cussed above where I?o is held fixed and So is varied. 
Alternati vely, if Y(r) is independent of I?o or depends on 
Po in a known way then So can be held fixed and Ro varied 
as was indicated in the Introduction. 

If the scattering potential is spherically symmetric 
then it is easily shown that V is an analytic function of 
the single variable 1?2 = k x

2 + k 2 + /(2 . In this case V is 
y Z 

completely determined by its value over any finite ill-
ten'a/ of Il. According to Eq. (9) such an interval is 
generated by a single scattering experiment; e. g., by 
fixing "oso and measuring the scattering matrix for all 
scattering directions s. As mentioned in the Introduc­
tion there are algorithms presented in the literature5 

for reconstructing spherically symmetric scattering 
potentials from such scattering data. 

The discussion presented above should provide ample 
proof of the fact that with the exception of spherically 
symmetric potentials a finite number of scattering ex­
periments simply do not generate sufficient information 
to lead to a unique reconstruction of the scattering 
potential. To reiterate: thc elltire wilily tic function V(k) 

of the three 1'(lYiables (/;'x' I?"1<,) is uniqucly specified 
for all raZues of (R x ' Rv ' Rz ) if and onl), if it is specified 
01'eY a finite l'olume (;lell1cnl in k space. A single 
scattering experiment leads to a specification of V(k) 
only over the slfljace defined in Eq. (9) while a finite 
number of experiments leads to a specification of V(k) 
only over a finite number of such surfaces. 

To illustrate the nonuniqueness inherent to scattering 
potential reconstruction from a finite number of scat­
tering experiments we shall now show that there exist 
an infinite number of (non spherically symmetric) scat­
tering potentials all localized within any specified scat­
tering volume T and all of which produce a scattering 
matrix AB (kos, koso) which 1'anisiIcs identically fOY all 
valucs of s for any finitc Ilumlley offixed l'alucs of 
hoso. 11 Anyone of these potentials can be added to any 
other potential Y(r) without changing the scattering 
matrix obtained from a finite number of scattering ex­
periments performed on V(r). Determination of V(r) 
from the scattering data is thus nonunique unless 
auxillary information (such as n priori knowledge of 
spherical symmetry) is available to rule out the pres­
ence of such scattering potentials within the scattering 
volume. 
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To begin we shall construct a class of scattering po­
tentials F(r) which produce a scattering matrix which 
vanishes for all values of s and a sinf{le value of koso' 
This class is then easily generalized to produce po­
tentials having scatte ring matrices which vanish for any 
finite number of incident field wave vectors. The key 
to generating the required set of scattering potentials 
is to note from Eq. (7) that AB (l?oS, koSo) is equal to the 
transform of the potential evaluated when k = ko (s - so), 
,!:hus, bv constructing a potential F(r) whose transform 
F(k) vanishes for these values of k we have constructed 
a potential which yields a scattering matrix which 
vanishes for a fixed value of koSo and all values of s. 

One such class of scattering potentials is generated 
by the relationship 

F(k) = [h 2 
- 2l<~ (1 - so' s) j:\(k) , (11) 

where s is defined in Eq. (8). Here A(k) is an entire 
analytic function chosen to have a transform A(r) which 
is continuous with continuous first and second partial 
derivatives and to be localized within a prescribed 
scattering volume T but is otherwise arbitrary. Sub­
stituting for s from Eq. (8) we find that 

F(k) = fh2 + 2hoso ' kj:\(k), (12) 

so that 

F(r) = (2~)3 fd3 1? F(k) exp(ik . r) 

(13) 

We can verify directly that the scattering potential 
F(r) produces a scattering matrix ,1B(i?os,1?0so) identically 
equal to zero. In particular, substituting F(r) for 
F(r) in Eq. (5) we obtain 

AB O?oS, hoso) = - jd3r{r'V 2 + 2il?oso . 'VIA(r)} 
T 

x exp (i I? oSo . r) exp (- ii, oS . 1') . 

We now note that 

Substituting from Eqo (15) into Eq. (14) we find that 

.'1B(kos,I<oso)=- Jd3r{(''V2+1?~)[A(r) 
T 

x exp(ikoso . r) n exp(ihos . 1') 

= - jePY[A(r) exp(+il,oso ·r)J 
T 

(14) 

(15) 

(16) 

where we have made use of the assumptions that A(r) 
is continuous with continuous first and second deriva­
tives and is localized within T. 

Finally, we note that the above construction technique 
can be repeated using a different value of koSo (say 
h' os' 0) and replacing A(rl by F(r) as defined in Eq. (13). 
We then obtain the class of scattering potentials 

(17) 
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which yield scattering matrices which vanish for all 
values of s when the wave vector of the incident field 
is either koso or k' as' o' Continuing in this fashion it is 
evident that it is possible to construct a class of po­
tentials whose scattering matrices vanish for all values 
of s when the wave vector of the incident field has any 
one of a finite number of prespecified values. 

3. INVERSE SCATTERING WITHIN THE 
FRAMEWORK OF EXACT SCATTERING THEORY 

The exact solution J(r,koso) to Eq. (2) satisfies the 
integral equation 

J(r,koso) = exp(ikoso ' r) - 4~ 

xl P , v( ')1 ( , i' ) exp(tko: r - r' 1 ) 

G V r" r , 'oSo 1 r _ r' I ' 

T 

(18) 

which can be shown to possess a unique solution J' under 
rather weak conditions on the scattering potential V(r). 
In the il11'cVSC s calterillg problcm we are not concerned 
with solving Eq. (18) for J in terms of the potential l' 
but, rather, are concerned with the problem of deducing 
the scattering potential F(r) from knowledge of the 
scattering matrix 

A(kos, koso) =[ rfr' V(r'),;,(r' ,!?oso) exp(- fIcaS' r/). (19) 
T 

In this section we shall show that knowledge of the scat­
tering matrix for a single fixed value of the incident 
field's wave vector koSo and all scattering directions is 
110/ sufficient information to deduce uniquely the scat­
tering potential Y(r). In order to establish this result 
we require the following Lemma. 

Lemm{/: There exist an infinite number of continuous 
functions p(r) localized within any specified volume T 

and such that 

i f,' (,)exP(ilcoir-r/i) =0, 
(1(or :r-r'l 

T 

(20) 

for all values of r lying outside the volume T. 

The above Lemma follows immediately if we choose 
p(r) to be given by 

(21) 

where /1(r) is a continuous function with continuous first 
and second partial derivatives and is localized within 
T but is otherwise arbitrary. Making use of Eq. (21) we 
find that 

f d3r' (r') exp(ikol r - r' i) 
p I r - r" 

" = f rfr'['v,,2 + k2) (r')J x exp(iko I r - r' I) 
T . 0 J1 1 r _ r' I 

=1 d3r' J1(r') fr('V'2 + k 2 ) exp(ikal r - r'I)J = - 4 () L 0 I r _ r' i 11 /1 r , 
T (22) 

where we made use of the assumed properties of ;...(r') 
and the fact that 
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(
,2 }2) exp(ikolr-r'l) --4 a( _ ,) 

'V + (a 1 r _ r' I - Ti r r , (23) 

with 0(') being the Dirac delta function. 

The Lemma established above allows us to prove the 
following Theorem. 

T heorcm: If there exist a set of functions (d', y) which 
satisfy the integral equation (18) for a fixed value of 
koSo then there exists at least one other set of functions 
(J', F') which also satisfy that equation for the given 
value of koSo and which are such that: 

(1) The regions of localization of both F and F' are 
identical and equal to the volume T. 

(E) Outside T, </I, and </I' are everywhere equal. 

Theorem Proof: It follows from the Lemma that we 
can find a set of functions (dJ,p) such that 

dJ(r) =1 d3r' p(r') eXp~il(al r,~ 1" I) = 0, 
r-r, 

T 

for all values of r lying outside T. The function 

J'(r,koso)=1(r,koso)+ cp(r) 

is thus everywhere equal to J outside T. Moreover, 

1/(r, koSo) = exp(ikoso . r) +/ d3 y'[1'(r' )dr' ,koso) 

+ p(r')] exp(ikpl'r - r' I) 
i r - r'l ' 

so that there exists a F'(r) equal to 

1"(r)= 1'(r)1>(r,kosa)+p(r) = F(r)1/I(r,koso)+p(r) 
ti"(r,koso) ~(r,koso) + 0(r) , 

(24) 

(25) 

(26) 

(27) 

which has the same region of localization as l' (namely 
T) and which together with i' satisfy Eq. (18). This 
completes the proof of the theorem. 

The two scattered fields~(r, kaso) and r (r, koSo) 
refered to in the above theorem are everywhere equal 
outside the scattering volume T and consequently gen­
erate identical scattering data. It follows that the scat­
tering data (1. e., the scattering matrix) generated 
from any single scattering experiment employing a unit 
amplitude incident plane wave exp(ikoso . r) is not suf­
ficient to uniquely specify the scattering potential. In­
deed, we have actually shown that a unique reconstruc­
tion is not possible even if one is given the value of the 
scattered field at all points lying outside the scattering 
volume T. Although this later result appears to be 
stronger than the former they are actually equivalent 
since, as shown in the following section, the scattering 
matrix uniquely specifies the scattered field at all 
points lying outside the scattering volume T. 

4. INVERSE SCATTERING USING DATA OTHER 
THAN THE SCATTERING MATRIX 

Throughout this paper we have assumed that the 
scattering data from which the scattering potential is 
to be determined consists solely of the scattering ma­
trix A(kos, koSo) or AB (kos, koso). It is reasonable to 
inquire of the possibility of uniquely specifying the 
scattering potential from a single or, possibly, finite 
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number of scattering experiments if more complete 
scattering data were available. The scattering matrix 
is the coefficient of the spherical wave - exp(ikor)/ (41Tr) 
in the leading term of the asymptotic expansion of the 
scattered field when the field incident to the scatterer 
is the unit amplitude plane wave field exp(ikoso . d. Thus, 
we might expect that complete knowledge of the scat­
tered field (not just the leading term in its asymptotic 
expansion) throughout all space exterior to the scatter­
ing volume T might provide more information than the 
scattering matrix and thus might lead to a unique speci­
fication of the scattering potential. Alternatively, the 
possibility exists that the use of incident fields other 
than the simple plane wave might possibly generate 
sufficient scattering data to yield a unique determina­
tion of the scattering potential in a single or finite 
number of scattering experiments. 

Consider first the possiblity of generating additional 
information in a scattering experiment by (hypothetical­
ly) determining the scattered field at all pOints external 
to the scattering volume. In both the Born approximation 
and the exact theory the scattered field is given by an 
expression of the general form [cf., Eqs. (3) and (18)] 

( ) ( . ) 1 f exp{ikolr-r'l) 
J; r, koSo = exp tkoSo 'r - 41T T d3r' S (r') I r _ r' I ' 

(28) 

where S(r') is a "source function" equal to the product 
of the scattering potential VCr ) with the field ijJ or, in 
the case of the Born approximation, the incident field 
exp{ikoso·r). The second term on the right-hand side 
of Eq. (28) is easily shown to be the solution to the 
inhomogeneous Helmholtz equation 

(29) 

which satisfies Sommerfeld's radiation condition (i. e. , 
behaves as an outgoing wave at infinity). It follows from 
a theorem18 pertaining to such wave fields that cjJ{r) 
is specified uniquely at all points exterior to the vol­
ume in which S{r) is localized (i. e., outside T) by the 
leadin;? term in its asymptotic expansion. Since the 
leading term in the asymptotic expansion of cjJ is simply 
the product of the scattering matrix with the spherical 
wave - exp{ikor)/(41Tr) it follows that cjJ{r) and, hence, 
J;{r, koSo) is uniquely determined for all values of r 
lying outside T by the scattering matrix. 

We conclude from the discussion presented above 
that for the case of an incident plane wave exp{ikoso ' r) 
complete knowledge of the scattered field throughout 
all space exterior to the scattering volume T is com­
pletely equivalent to knowledge of the scattering 
matrix A (kos, koSo) evaluated at that particular value 
of koSo equal to the wave vector of the incident plane 
wave. This result is true both within the framework 
of the Born approximation and in exact scattering 
theory. In conjunction with the results presented in 
Sec. 2 it leads to the assertion that: within the frame­
work of the Born approximation it is impossible to 
uniquely deduce the structure of a scattering potential 
from measurements of the field external to the scatter­
in;? volume in any finite number of scattering experi­
ments using incident plane waves o The results present-
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ed in Sec o 3 show that the same assertion holds true 
within the framework of exact scattering theory if we 
allow only a single scattering experiment 

Consider now the use of incident fields other than 
plane waves in a scattering experiment. Denoting such 
an incident field by ~(r,ko) we find that the scattered 
fie ld J! (r, ko) satisfies the integral equation 

ijJ{r k)=~{r k)-J..-l ~r'V{r')ijJ{r' k)exP{ikolr-r'l) 
, 0 '0 41T '0 I r - r' I ' 

T (30) 

which, within the Born approximation, yields the follow­
ing expression for J': 

,I'{r k)=c{r k)-~fd3r'V{r')C{r' k )exp{ikolr-r'l) 
'f '0 s '0 4 s ,0 Ir-'I . 

1T T r (31) 

A perusal of the theorem established in the previous 
section reveals that its proof does not depend on the 
nature of the incident wavefield to the scattering po­
tentiaL Consequently, the theorem applies equally 
well to the integral equation (30) for arbitrary fixed 
incident fields ~ (r, ko). It follows that within the fram e­
work of exact scatteril1;? theory it is impossible to 
uniquely deduce the structure of (/ potential from m ea­
surem ents Of the field external to the s catterin;? vol­
ume in any sin;?le scattering experiment. 

The situation is actually more complicated within the 
approximate scattering model provided by the Born 
approximation. Without loss of generality we can as­
sume the scattering data consists of the leading term 
in the asymptotic expansion of 1fJ which is easily shown 
to be 

(32) 

Here 

f{koS) = i d3r'V{r')~{r',ko)exp(-ikos'r'), (33) 
T 

is the generalization of the scattering matrix 
AB(ko,koso) to incident wavefields other than plane 
waves. 

We shall consider only the case when the incident 
field is expressable as a sum of a finite number of 
plane waves exp{ikoso ' r) having identical wavenumbers 
ko but different directions of propagation So 19; 1. e. , 

~ (r, ko) = L a(koso) exp(ikoso 0 r). (34) 
'0 

Substituting Eq. (34) into Eq. (33) yields 

f{kos) = L a{koso)jd3r' VCr') exp{ikoSo ' r') exp(- ikoS' r') 
10 , 

(35) 

where we have used the definition of the scattering ma­
trix within the Born approximation given in Eq. (5). 

The results presented in Sec. 2 showed that it is 
always possible to find a scattering potential V{r) 
which produces a scattering matrix AB (kos, koSo) which 
vanishes identically for all values of s and any finite 
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number of fixed values of koso' Since the sum in Eq. 
(35) is over a finite number of terms we can replace 
AB (kos, koso) in this equation with the sum AB + AB with­
out changing (the observable) j(kos); i.eo, 

j (kos) = 0 a(koso)[AB (kos, koso) + AB (kos, koSo») 
'0 

= 0 a(koSo)j d3r' [V(r') + V(r'»)exp(ikos o ' r') 
'0 T 

xexp(-ikos'r') 

=j d3r'[V(r')+V(r')1~(r',ko)exp(-ikos·r'). (36) 

It follows immediately from Eq. (36) that it is not pos­
sible to uniquely specify the scattering potential from 
j(kos) and, hence, from a finite number of scattering 
experiments using incident fields representable in the 
form given in Eq, (34). 
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Classical and relativistic vorticity in a semi-Riemannian 
manifold 
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It is shown. that a form of the Cauchy-Lagrange formula for the evolution of vorticity in a barotropic 
flow generalizes to the case of ideal fluid motion on higher-dimensional Riemannian or semi-Riemannian 
manifolds. 

1. INTRODUCTION 

An important theorem concerning the motion of an 
ideal fluid is the Cauchy-Lagrange formula, valid for 
barotropic flow (see Sec. 2), which expresses the vector 
w/Pt as a linear function of wo/Po. Here wI' the vorti­
city at time t, is defined as curl Vt, where v t is the 
velocity field at time t; Pt is the density (mass per unit 
volume) at time t, not assumed constant. The precise 
formula is 

where the matrix F t* is the Jacobian matrix of the 
diffeomorphism F t representing the fluid motion: 

(1) 

F t(x) = position at time t of the particle which was at x 
at time 0. 1 Cauchy proved this formula in 1815. See 
Refs. 2 -4. A consequence of (1) is that if the vorticity 
is zero at a point x at time 0, it remains zero at all 
points F t (x) vis ited by the particle that was at x. (In 
particular, if the vorticity is zero everywhere at t = 0, 
it remains zero everywhere, and hence locally V= V¢ 

for some potential <P. So potential flow perSists for 
all time,) 

Our object is to generalize the Cauchy-Lagrange 
formula to the case of ideal (compressible or 
incompressible) fluid motion in an n-dimensional 
semi-Riemannian manifold. Actually this relation 
cannot be directly generalized: one proves a covariant 
form, in whlch the vorticity is a 2-form rather than a 
vector field, For the incompressible case, a reference 
for this is Marsden. 5 Our method, however, is to view 
the problem in space-time, which both simplifies the 
calculations, and allows a simultaneous treatment of 
relaLil'istic motion. We analyze in detail the isometric 
motion of a relativistic flUid. This has been discussed 
by Mason,6 Ciubotariu, 7 and Trautman;8 the present 
analysis is much simpler. 

2. IDEAL FLUID FLOW IN 1R3 
For the purposes of comparison, we briefly derive 

the classical results. There are two equations, express­
ing conservation of momentum and of mass. [In general 
a subscript t indicates evaluation of a quantity at time 
t, but only when 'Fie wish to emphasize the evaluation. 
Thus, for example, v=v(x,t)=v t .] 

3v 1 'ilp at + (v· V)v= --;;vp, at + V· (pv)=O. (2) 

Here p is the pressure field. A barotropic fluid motion 
is one in which p and pare fnnctionally related. This 
may be either a physical property of the fluid or else 

a peculiarity of the particular motion under study. 
We define an operator 

a 
U=at +v' V (3) 

By curling (2) and using some vector identities involving 
curl and divergence, one finds 

[u,~.vJ=o, (4) 

where the square bracket stands for the commutator 
(Lie bracket) of these differential operators. Thus in 
space-tIme M =R3 x R the floUJs generated by these two 
vector-fields commute. The flows are, respectively, 

flow of u: Gt(x ,s) = (Fs+tF;l(X),S + t), 

w 
flow of _. V: Ht(x,s)= (y(t),s), 

p 

(5) 

where y(t) is the position t-nnits along the integral C11rve 
of w/p frozen al lime s: 

dy=w(Y(r),s), '(O)-x 
dr p(Y(r),s) ,} -,. 

The "quadrilateral" in Fig. 1 commutes because of 
(4), as does therefore the projection of this figure 
onto JR3. We thus have the pictllre in Fig. 2 from which 
we can draw two conclusions: 

Proj)osilion 1: (1) Frozen w/p lines are material 
lines, that is, they move with the fluid. (2) Frozen 
w/p-lines permllte the particle paths. I. e" if each 
point of a given particle path is transported by the w/p­
line frozen at the local time, the resulting curve is also 
a particle path. 

Remark: Part (2) seems to be a new observation. 

Corollary: If the vorticity is zero at a point x, it is 
zero at all points along the furture trajectory beginn­
ing at x, 

FIG. 1. 

( x,o) 
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Proof: By hypothesis, A = B in Fig. 1. But two 
distinct particle paths cannot originate from the same 
point. Thus C = D, which means w = ° at time s on that 
particle path. 

Equivalent consequences of (4) are the relations8 

(6) 

111 =H * I III( . Ht(x,s) t (x,s) XIS) 
(7) 

Since w/p·V has no time-term, (6) reduces to the 
Cauchy formula (1). The formula (7) does not seem to 
be of any particular use. 

3. A LEMMA ABOUT LIE DERIVATIVES 

Let Al be a semi-Riemannian manifold with (indefinite) 
metric tensor g. Thus g is a second rank covariant 
tensor defining a nondegenerate bilinear pairing of each 
tangent space. We give M the unique torsion-free metric 
connnection determined by g and denote the associated 
covariant differentiation operator by v. If v is a vector 
field on !VI, then Lv denotes the Lie differentiation with 
respect to v and V v is covariant differentiation with 
respect to v. Following Kobayashi and Nomizu, 9 we 
define the oper ator Av = Lv - V v for v a vector field on 
At, All functions and tensor fields are assumed smooth 
unless otherwise specified, For economy of termino­
logy we define a tensor derivation to be any derivation 
of the algebra of tensor fields which commutes with all 
contractions, The tensor derivations themselves form 
a Lie algebra. 9 As Lv and V v are tensor derivations and 
L,j = V vi for any function f we conclude: 

(a) for any vector field v, the operator Av is a tensor 
derivation vanishing on functions, 

Moreover, as our connection is torsion-free ([11, v] 
= V"v - Vvlt) , we have 

(b) if 11 and v are vector fields, then A}, = - V vII ~ 
Combining (a) and (b) gives 

(c) if II and v are vector fields and A is a I-form, then 
(AuA, v> = (>., V vII>, where ( ,> denotes the pairing of 
I-forms and vector fields. If v is any vector field, we 
denote by v* the dual I-form given by ( v* , w > = g(v ,1{') 
for each vector field 1V. 

We now observe that if II, v ,ware all vector fields, 
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then by (c) 

(A"v*,w > =g(v, Vwll) , 

and hence as Vg= 0, 

(d[g(u ,v) 1, W > = V w[g(u , v ) 1 = g(V ",II, v) + g(u, V w v ) 

= (Auv* , w > + (Avu* , w > , 

and thus 

d[g(u, v)1 = A"v* + Avu*. 

Taking u =v and applying the definition Au =Lu - V., 
we findio : 

Lemma: For any vector field It, 

L,,(II*)=Vulf* +~dLl[(u,II)]. 

[Notice that Vu(v*)=(V"v)* as Vg=O, so that the notation 
V"v * is unambiguous, ] 

Remark: Each mixed second rank tensor field scan 
be thought of as an endomorphism of the tangent bundle 
of Al and defines a unique tensor derivation vanishing 
on functions which we can denote by D[s]. With this 
notation we can view. (b) as stating that for each vector 
field 11, 

Au =-D[Vu 1. 
A similar computation shows that if f is a function, then 

(8) 

The lemma, even though merely a fact about vector 
fields, can be given a physical interpretation. We think 
of II as being the velocity field of some "generalized" 
fluid motion on M, so a = V"" is the acceleration and 
E= tg(u,lf) is half the "square of speed." With this nota­
tion we can write the lemma as 

L"(II*)=a* +dE. 

For any vector field v, we define nv = dl'* as the 
generalized vorticity of 1', As exterior and Lie differen­
tiation operators commute, and d2 = 0, and we have the 
following fact 

Corollary: L,.(n,.l = n •. 

Thus the voricity change along flow lines is directly 
related to vorticity of acceleration. 

4. NONRELATIVISTIC FLOW OF IDEAL MOTION 
IN A RIEMANNIAN MANIFOLD 

Let S be a Riemannian manifold, For a discussion of 
the correct formulation of the Euler equations, we 
refer the reader to Serrin,2 (The problem is that the 
integral conservation laws leading to the Euler equa­
tions cannot be expressed intrinsically. ) See also 
Dunic,l1 Ebin-Marsden,12 Marsden,13 and Szeptycki,14 
where existence and uniqueness questions are treated, 
We accept as a hypothesis that the correct generalization 
of the Euler equations is 

1 
Vv=--Vp (9) 

" p 

on the space-time manifold M=SxlR. Here l' is the 
(time-dependent) Eulerian velocity field on S, inter­
preted as a vector field on M; u=a/at+v [see (3)1, 
another field on M; and p and p are functions on M, 
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The metric tensor of Ai is g = metric tensor of 
S I de'df. Actually, the dual form of (9) is more 
convenient, 

(10) 

Note that 'Vu(u*)='VU<II*), since 'Vu(dt)=O. Thus if the 
flow is barotropic, which we assume, the Euler 
equation reduces to the statement 

'V.(II*) is ('yael. 

The corollary then implies that Lu(d/(*) = O. 

fJroj)osilioll 2: (Covariant form of the Cauchy­
Lagrange formula. ) Let 11 be a time-dependent vector 
field on a Riemannian manifold 5, satisfying the Euler 
equation. Suppose pressure and density to be function­
ally related. Let r F t : I c lRr be the family of diffeo­
morphisms of 5 generated by v, and define the vortiCity 
be to the 2-form wt=dl'i. Then 

Fi(wt)=",o' 

Proof: Define Il t : 5 - M by u/tl = (x, t), and note 

lli(II*)=l'i· 

Let the flow {C t } be defined in terms of the family {Ft } 

exactly as in (5), and note that 

II is the infinitesimal generator of {CtT' 

Also it is clear that IlsoFs=Cs °llo' Finally, 

Fi (w t ) = Fi (dv1) 
= Fid(lliu*) 

= Fi Il;dll* 

= (Ilto F t )* dll* 

= (C t C Il o)* dll* 

=1l~Ci(du*) 

= Il~dll* by (10) and (11) 

(11) 

Remark: For the incompressible case, see Ref. 5, 
p, 86. 

5. ISOMETRIC MOTION OF A RELATIVISTIC 
FLUID 

In this section we assume that u is the generalization 
of the four-velccity field of a relativistic fluid, so we 
suppose that 

g(u ,11) == 1. (12) 

First let ~ = ju where f is a function. By (12), g(u, u) is 
constant so that g(1I , 'V ull) = 0, and we see veloc ity is 
perpendicular to acceleration, Thus on taking the inner 
product of u with 'Vu~ = ('V ,j)u + j'V uu, we find 

On the other hand, applying the lemma of Sec. 3 to ~ 

(and using g(~, U = f 1 gives 

(13) 

(14) 

With these facts in mind, we can give an easy proof 
of the conservation of vorticity for isometric motion. 
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We first recall some basic facts, A vector field k is 
called a Killing vector field provided Lk(g) = O. As 
'Vg = 0 we note that Lk(g) = 0 is equivalent to A,g = O. 
A simple calculation shows that for any vector field I) 

we have Lv'i=Sym('Vv*), where Sym denotes the 
symmetrizing operator. Consequently 

" is a Killing vector field 

"= Sym('Vk*)=O 

,:=,~ for every vector field ll', g('V ,j?, 11') = o. (15) 

A relativistic fluid motion is called isollzetric if there 
is a nonvanishing Killing vector field parallel to 4-
velocity. We thus assume that ~ is a Killing vector 
field. Combining (13) and (15) gives 

'Vuf= O. (16) 

Now for any vector field v, 11* is a contraction on 
g~~v, hence as L( is a tensor derivation, L(v*) 
=L(v)* and therefore the left side of (14) vanishes. 
Thus in view of (16), (14) reduces to f'V.u* = - fdf so 
that if ~ is nowhere vanishing (as we can assume, then 
f is everywhere positive without loss of generality) 
we can write 

'Vp* = - d(logj). 

But this means the lemma of Sec. 3 (and corollary) 
applies to say 

Lu (\1.) = 0, 

(17) 

(18) 

where as before, rt. = du* is the generalized vorticity. 
Physically, (18) states that vorticity is conserved in 
isometric motion. Of course the lemma says (18) would 
hold whenever acceleration is potential, but this is 
really no more general j becuase in this latter case we 
arrive immediately at (17) and then work our way backs 
to L(g= O. Thus the condition of isometric motion is 
equivalent to the condition oj acceleration being a 
potential. According to the corollary to the lemma of 
Sec. 3 and the Poincare lemma for differential forms, 
vorticity can be conserved only when the motion is at 
least locally isometric. From (8) we have Llu = - ('VJ)lI, 
which vanishes by (16), so that both II and g belong to 
Ker L I' As L ( is a tensor derivation commuting with d, 
it follows that any tensor constructed out of u and g 
via operations of :2', +, scalar (constant) multiplication, 
d, contraction, Hodge star, will again belong to 
Ker L (. Such tensors include the physical tensors of 
interest in the case where dimM = 4 and g has signature 
(+ - - -). In particular, the comoving vorticity 2-form 
w, the expansion, and the comoving vorticity vector all 
belong to KerL( by our preceding remarks, and we 
therefore obtain as special case the results of Mason6 

and Ciubotariu, 7 However, as (8) makes quite clear, 
Ker L I and Ker L. are two different things: "shearing" 
due to 1/f can prevent some of these tensors from being 
conserved in an isometric motion. 

A more general condition than the condition of 
isometric motion is the condition of Born rigidity. As 
(12) holds, the tensor 

p. = g - u* ;s u* 

defines (in mixed form) a field of projection operators 
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onto the orthogonal complement of U in TM, the tangent 
bundle of M. The motion is said to be Born rigid if 
Lu(P)=O. With h= 1//, a simple calculation shows 

L)g) =hL({g) + 2 Sym(~* @dh). (19) 

Hence if ~ is a nonvanishing Killing vector field, then as 
L(g=O, 

Lu{g) = 2 Sym(~* @dh) 

=2/Sym[u*@(- j)] 
=2Sym[u*@ 'V.u*] , 

where in the last step (17) has been applied. But by the 
lemma of Sec. 3 and (12), we have 'Vuu* =Luu*, hence 
Lu{g)=LH(u*@u*) and therefore Lu(P)=O, which means 
the motion is Born rigid. As examples exist of non­
isometric Born rigid motions, and in view of our 
preceding remarks (the corollary to the lemma) we 
conclude that, in general, vorticity is not conserved 
in Born rigid motion. 
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In the past few years there has been a growing interest in cosmological models which are not spatially 
homogeneous. The assumption of spatial homogeneity simplifies the Einstein equations to ordinary 
differential equations. If the assumption of spatial homogeneity is relaxed. some other symmetries are 
needed to make the Einstein equations mathematically tractable. The recently discovered solutions of 
Szekeres have been found to possess an interesting type of symmetry: The three spaces orthogonal to the 
fluid flow are conformally flat. Herein. we prove a theorem restricting the possible inhomogeneous 
cosmologies with conform ally flat 3·surfaces. We determine which spatially homogeneous models admit 
conformally flat 3-surfaces. This information. although interesting in its own right. will serve as a guide 
in determining those spatially homogeneous models that may be generalized by retaining spatial conformal 
flatness but relaxing the condition of spatial homogeneity. 

I. INTRODUCTION 

Spatially hotl.1ogeneous cosmological solutions to the 
Einstein equations have been extensively studied in the 
past fifteen years, the work being facilitated by 
Bianchi's original classification scheme for Lie groups 
and its various modificationso 1 This scheme has enabled 
researchers to study the dynamics of restricted classes 
of models individually. Lately, interest has turned to 
inhomogeneous models, where the same powerful group 
theoretic techniques are no longer applicable. 

Szekeres2 has recently found a family of exact solu­
tions to the Einstein equations with a pressure-free 
matter source ("dust"), some of whose members may 
be interpreted as inhomogeneous cosmological models. 3 

This family was later generalized by Szafron and Wain­
wright4•o to include perfect-fluid sources, We will 
henceforth refer to all these solutions, for p = 0 or 
f) * 0, as the "Szekeres solutions," 

The Szekeres solutions have conformally flat, co­
moving, spacelike hypersurfaceso 1>. 7 These models 
suggest that the assumption of conformally flat space 
sections ("spatial conformal flatness") may provide 
the symmetries necessary to solve the Einstein equa­
tions when the condition of spatial homogeneity is 
relaxed, 

Herein, we explore some of the restrictions imposed 
by spatial conformal flatness, In Sec. 2 we study that 
subclass of the Szekeres solutions which obey the 
barotropic equation of state p = P (i-l), where IJ· is the 
relativistic energy density and P is the pressure of the 
perfect fluid. In Sec. 3 we determine which spatially 
homogeneous models admit conformally flat slices. In 
this way all possible limiting cases of inhomogeneous 

a)\\'ork supported by an i'l. M. U. Faculty Research Grant. 
b)Permanent address. 
c)Work supported by a postgraduate scholarship from the 

National Research Council of Canada. 

cosmologies with conformally flat slices are exhibited. 
This should facilitate future attempts at generalizing 
the Szekeres solutions. Section 4 contains our 
conclusions. 

Throughout, we use the orthonormal tetrad technique, 
as elucidated by MacCallum. S Our notation also follows 
that of MacCallum, and is, briefly: 

Space-time metric signature: + 2, 

Orthonormal tetrad: {eo}, a = 0 to 3. 

Tetrad components are denoted by letters at the be­
ginning of the Latin and Greek alphabets, coordinate 
components by letters near the end of the alphabets. 
Latin letters range from ° to 3, while Greek letters 
range from 1 to 3. 

Partial derivatives with respect to coordinates: 
?lB!?x==Bx ' 

Derivatives along tetrad vectors: ea • a == (I a' 

II. THE SZEKERES SPACE-TIMES 

The Szekeres space-times are solutions to the 
Einstein equations, 

Rab - ~gabR = (fJ- + I)~ lIallb + fJ/?ab' (2.1) 

for the metrics of the form! 

ds2 = _ dP + {'2A dx2 + {'2B (di + dz2 ) 

with the fluid flow vector 

G 
u= "(1/' 

(2.2) 

(2,3) 

(Note that the metric signature and notation used here 
differs from that of Szekeres2 and Szafron, 5) They 
divide naturally into two classes,5 (In fact, this is a 
coordinate- independent division. 7) 

Class 1. Ex * ° 
and A and E have the form 
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A = In(1)(rp/1)J, 

B=ln[rp/1)], 

where 

1)=1)(x,y,z), rp=rp(t,x). 

Class 110 Bx = 0 

A =In(A + rpt], 

B=ln(rp/1)], 

where 

A = A(t, x), rp = rp(t) 

1)=~[l+h(l+zZ»), Il=±l or 0, 

t = [Ci(x)(i + z2) + ;3(x) y + y(x)z + o(x)]1). 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2. 10) 

(2. 11) 

(2.12) 

(2.13) 

The functions a, {.J, Y, and 0 are arbitrary. Szafron5 

gives an algorithm for determining rp in Class I, and rp 
and A in Class II once the pressure p is prescribed as 
a function of time; however, we shall not need more in­
formation than is given here. 

The Szekeres space- times contain a perfect fluid 
whose flow is irrotational, geodesiC, and normal to the 
hyper surfaces {t = constant}. Moreover, the flow's ex­
pansion tensor, 0",8, has two equal eigenvalues: 

(2.14) 

as does the 3-Ricci tensor of the spacelike hyper­
surfaces. The co-moving, spacelike hypersurfaces 
{t = constant} are conformally flat, as was shown by 
Berger et al. 6 for the Class I Szekeres solutions, and 
by Wainwright and Szafron (private communication) 
for all the Szekeres solutions. In fact, as Collins and 
Szafron7 have shown, one may characterize the gen­
eralized Szekeres solutions by the above properties. 
We state this as a theorem, whose proof may be found 
in Collins and Szafron7: 

Theorem 2.1: A space-time that contains a perfect 
fluid and satisfies: 

(i) the fluid flow is geodesic and hypersurface­
orthogonal (u = 0 = w); 

(ii) the hyper surfaces to which the fluid flow is nor­
mal are conformally flat; 

(iii) both the Ricci 3- tensor of the hypersurfaces and 
the fluid's expansion tensor have two equal eigenvalues, 

is a solution to the Einstein equations if and only if it 
has the Szekeres line element. 

The matter content of these space-times obeys an 
equation of state that is, in general, an unusual one; al­
though the energy density may exhibit spatial variations, 
the pressure may not [p == p(t) always J. In what follows 
we restrict our attention to that subclass of solutions 
satisfying a barotropic equation of state: 

(2.15) 

Within this subclass, both fl and p will be functions of 
time alone. The natural question which arises is: Do 
any spatially-inhomogeneous space-times belong to 
this subclass? (Wainright9 has shown that all Szekeres 
solutions with p=p(p.) are locally rotationally sym-
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metric (for definition see Ref. 10),] In fact, there are 
none, as we demonstrate below. 

Lemma 2.2: In those Szekeres space-times with 
fl = fl(t), both ° "'~ and R~8 are functions of time alone. 
[Note that in the Szekeres space-times p =p(t). The 
assumption p = p(fl), dp/ dfl * 0 is a subcase of fl == fl (f), ) 

Proof: We have 

o",p=O=o",flo (2.16) 

Equation (A13) then implies 

0"01=-20,,,°2, (2.17) 

Taking 0", of (A 7) and using (2. 17) and the commutation 
relations (A2) gives 

(01- 02) 0",01 =0; 

whence we have 

0,,°1=0,,°2 =0, 

(2.18) 

(2.19) 

whether e I == 02 or not. The equations obtained by taking 
ClOl of (All) together with (2.19) give 

ClOlRtl = a OlRi2 = 0, (2.20) 

thus completing the proof. 

Theorem 2.3: Any Szekeres solution with /l = fl (1) is 
spatially homogeneous and is either: Robertson­
Walker, of the Kantowski-Sachs type (see Sec. 3), or 
admits a group of Bianchi-Behr types I or VI_I' 

(2.21) 

We consider the two classes of Szekeres metrics 
separately: 

Class I: 0l(t)==B t =(/J/rp, 

implying that rp has the form 

rp (t, x) = E(x) expl r 01 dt]. 

But then 

03(t) =At = rp/ rp = tl j , 

(2.22) 

(2.23) 

(2.24) 

so the expansion is isotropic, 1. e., shear-free. Any 
perfect-fluid space-time in which the flow is geodesic, 
irrotational, and shear-free is necessarily Robertson­
Walker ,11 (p. 135): thus the theorem is proven for 
Class 1. 

Class II: These are characterized by By = 0, so aj = 0. 
With (2.21), Eqs. (A9) and (AID) reduce to 

(2.25) 

and 

(2.26) 

If /11 = 02 these space-times must be Robertson-Walker 
by the previous argument; so assume Ill'* 1l2• Then 

0== a2 - n31 == - A~ e-
B 

0== a3 + n12 = - A z e-
B 

, 

implying that!;; = 0 in (2.13). Therefore, 

03(t) =At = A/A; 

so we must have 

A. Spero and D.A. Szafron 

(2.27) 

(2.28) 

(2.29) 
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where F(x) is arbitrary. The metric now becomes 

ds2 "" - dt2 + exp [2 It e3 dtJ F2(X) dx2 

¢2(t) (d 2 2) + 2( ) v +dz • 
1) y,z -

(2.30) 

(2. 31) 

By suitably redefining the x coordinate we may set 
F(x) "" 1. This metric is spatially homogeneous and has 
the Killing vectors: 

~l "" [~k(z2 - y2) + 1] :z + kyz :,' ' 

a 1 l (2 2) 1 a ~2 = 1?yz 2; +"2 1? y - z + 1 ily' 
~ c a .,-v--z-3--az By' 

We need only determine the possible Lie algebras. 
The commutators of the Killing vectors are: 

l~l' ~21 "" kb 
[b ~31 "" Ei> 

[bed=~2' 

[~4' ~ i 1 "" ° (i = 1, 2, 3). 

The following cases obtain: 

(i) I? = 0, ~b b and ~4 form a simply-transitive 
group of Bianchi-Behr type I; 

(2. 32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(ii) I? = + 1, ~i' and ~4 form a multiply-transitive 
group with no simply-transitive subgroups. This is the 
Kantowski-Sachs case. 12,13 

(iii) k= -1, El + E3, ~2' and;4 form a simply-transi­
tive group of Bianchi-Behr type VI_I' [Note: We find 
that the Kantowski-Sachs metrics can arise only when 
k = + 1. Szekeres2 has stated that the I? = ± 1 cases gen­
eralize those solutions given in Kantowski and Sachs, 13 

In fact the k = - 1 solutions are only the Bianchi-Behr 
type VI.l solutions found by Kantowski and Sachs (see 
Ref. 12). J This completes the prooL In special cases 
other groups may be admitted as well as the ones in­
dicated. For example, a space-time may admit a 
Bianchi-Behr type VIlo group in addition to its Bianchi­
Behr type I group. 

By combining the preceding two theorems, we obtain 
a theorem similar to that of Berger e{ at, 6 concerning 
the nature of possible inhomogeneous exact solutions to 
the Einstein equations with perfect fluid sources. 

Theorem 2.4: Given Einstein's equations with a zero 
cosmological constant, a perfect fluid source, and: 

(i) irrotational, geodesic flow whose expansion tensor 
has two equal eigenvalues; 

(ii) conformally flat, comoving space slices, whose 
Ricci 3-tensor has two equal eigenvalues; 

(iii) the equation of state J-l = J-l(t); 
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the only solutions are spatially homogeneous ones that 
are either: Robertson-Walker, Kanotwski-Sachs, or 
admit a Bianchi-Behr type I or VI_! group, Berger et 
al, 6 replace (i) with irrotational flow and spherical 
symmetry about a regular spatial origin; require flat 
comoving sections rather than (ii); and assume p "" p (J-l) 
with a nonzero speed of sound. With their assumptions, 
only the Robertson-Walker solutions arise, 

Theorems of this type are special cases of the more 
general conjecture: hypersurface orthogonal space­
times (w""O) with geodesic flow ('11=0) and /1 =/1(1), 
P = p(t) are spatially homogeneous. We know of no 
counterexamples to this conjecture, however we know 
of no proof either. 

III. CONFORMALLY·FLAT SPATIALLY-HOMOGENEOUS 
SPACE-TIMES 

We shall consider space-times satisfying the two 
conditions: 

(A) There exists a group of isometries G r whose 
orbits in some open set of the space-time are space­
like hypersurfaces with either 

(i) a subgroup G3 of G r , which acts simply transitive­
ly, or 

(ii) no such subgroup G3, and 

(B) The surfaces of homogeneity are conformally flat. 

If r:> 3, it can be shown14 that r "" 4 or r = 6, Those 
space- times with y = 6 are the Robertson-Walker 
models (see Ref, 12), therefore they satisfy (Ai). 
Space-times satisfying (Aii) have 1'=4 and a subgroup 
G3 whose orbits are two-dimensional and of constant 
positive curvature (see Refs. 12 or 15), We will refer 
to these space-times as Kantowski-Sachs since 
Kantowski and Sachsl3 have studied solutions to the 
Einstein field equations with dust matter content ad­
mitting such a group, 

Let us first consider space-times satisfying (Ai). 
We choose an orthonormal tetrad {ea} so that eo is 
orthogonal to the hyper surfaces and 

J1 Ci B = diag(J1!, nZ, 113), aB = (a, 0, 0), an! = 0, (3,1) 

where Il"'B and as are given in terms of the rotation 
coefficients rabC=ea °vbec by 

(3.2) 

The proof that such a tetrad can be found is given by 
Ellis and MacCallum. 1 Although their paper assumes a 
perfect fluid energy momentum tensor, this assumption 
is not used in deriving the tetrad, Notice, however, that 
their fluid flow vector u must be replaced by our tetrad 
vector eo which at this stage is independent of any fluid, 
Their fluid quantities, eOiB, W OiB ' and nOi , here just 
relate to the timelike congruence defined by eo, The 
commutators {e,,} are given by 

[el, e2J = ae2 + n3e3, 

[e2,e3J=111 el1 (3,3) 

[e3, e1] =n2e2 - ae3' 

The group G3 may be classified by placing nb n2, and 
n3 into one of the canonical forms of Table 1. 
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TABLE I. Classification of space-times satisfying (Ai), given 
by Ellis and MacCallum, 1 due originally to Bianchi, and modi­
fied by Behr. Here, Iz '= a2/112113' 

Bianchi-
Behr 

Group group 
class type a 

I 0 
II 0 

A VIlo 0 

VIo 0 
IX () 

VIII 0 

V + 
IV + 

B VIIh + 
VIh + 

111 

0 
+ 
+ 
+ 

+ 

0 
0 
0 
0 

Bianchi 
112 113 type 

0 0 
0 0 II 
+ 0 VII 

0 VI 
+ IX 

T VIII 

0 0 V 
0 + IV 
+ + VII 
+ VI 

(III if h=-l) 

Eisenhart16 has shown that a 3-space is conformly 
flat if and only if 

o =R~~~ '=R:~I). - R~~IB + Hg~~R* I~ - g!~R* 1,\), (3.4) 

where * denotes a quantity in the 3-space and I is the 
covariant derivative in the 3-space. We expand (3.4) 
in the tetrad (3.1) and note that c",R* ~~ = 0 since the 3-
spaces are homogeneous, 

0:=- r:QR~6- r:6R~a + rtQR~~ + rt~R~",. (3.5) 

From Ellis and MacCalluml the 3-Ricci tensor of the 
homogeneous hypersurfaces is 

R~a=- 2Ea~("na)aa~ +2n"onoa+nn"6 

+ 0 "s(2a 2 + na),na~ _ ~2). 

In Appendix B we have written out: r ,,~, R* "a, and 
Eqs. (3.5) in the tetrad (3.1). 

(3.6) 

Lemma 3.1: Space-times satisfy (Ai) and (B) if and 
only if they admit: a group of Bianchi-Behr type I, a 
type VIlQ group with nl = n2, a type IX group with nl = n2 
= n3, a group of type V, a type VIIh group with n2 = n3 
or a type VI_1 group with a = n2 = - n3. 

Proof: The conditions for conformally flat surfaces 
of homogeneity (3. 5) in the tetrad (3,1) are equations 
(B3)- (B6). First we consider solutions admitting groups 
from class A (a=O). Equations (B5) and (B6) are iden­
tically satisfied, Equation (B3) minus (B4) yields 

(nl - n2) (3ni + 2111n2 + 3n~ - 2n3nl - 2n3112 - n~) = O. 

(3.7) 

Twice (B3) plus (B4) yields 

(111 - 113)(31l12 + 2111113 + 31132 
- 2n2111 - 2112113 - lI22) = 0, 

(3,8) 

The only simultaneous solutions of (3,7) and (3,8) are 

nl =112 = lI 3; 111 =n2,113 =0; 111 =113, n2=0; 

or 112=113,lI1=0. 

Comparing these possiblities with the canonical forms 
of the class A groups in Table I, we see that the 
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Bianchi- Behr group types admitted are: type I, those 
type VIIo with /11 = 112, and those type IX with /11 =112 = 113, 

Now we consider solutions admitting groups from 
class B (a *- 0, 111 = 0). Equation (B5) yields 

Equations (B3) and (B6) are then identically satisfied. 
Equation (B4) implies 

(n2 - 113)(2a2 - 2n22 - 113112 - 11/) = 0, (3.11) 

The only simultaneous solutions of (3,10) and (3.11) 
are 

(3.12) 

Comparing these possibilities with the canonical forms 
of the class B groups in Table I, we see that the 
Bianchi- Behr group types admitted are: type V, those 
type VIIh with 112 = 113, and those type VLl with a = 112 

= - 113, Q, E. D. 

Lemma 3,2: All space-times satisfying (Aii) satisfy 
(B). 

Proof: Kantowski 12 (c. f. Ref. 15) has shown that we 
may write the metric in the form 

ds2 = _ dt2 + X2 (t) dr2 + y2 (t)(de2 + sin2 e d<;b2), (3, 13) 

where the hypersurfaces of homogeneity are given by 
{t= constant}. It is clear, after defining a new coordi­
nate p=exp(Xr/y), that the hypersurfaces of homo­
geneity are conformally flat. We can combine Lemmas 
3.1 and 3.2 into the following theorem: 

Theorem 3. 3: Space- times subj ect to (A) satisfy 
(B) if and only if they are Kantowski-Sachs or admit 
one of the following Bianchi- Behr groups: type I, type 
VIlQ with 111 = il2, type IX with 111 = /12 = liS, type V, type 
VUh with 112 = 113 or type VI_1 with a = 112 = - 113, 

The results presented so far have been purely 
geometric. We shall now in addition demand that the 
space-times satisfy 

(C) the Einstein field equations: 

(3.14) 

where the energy-momentum tensor is that of a perfect 
fluid 

Tab = IWallb + p(gab + llaub), 

uau"=-l, !l>0, P~O. 

Later, we shall impose the additional restriction 

(D) The fluid-flow vector U is orthogonal to the 
hypersurfac es of homogeneity, i. e" U = eo, 

Space- times not satisfying (D) are said to be "tilted, 17" 

Theorem 3,4: All space-times satisfying (A), (B), 
and (C) which do 110t satisfy (D) must admit a group be­
longing to one of the following types; 

(i) VIlQ with III = il2 (these are precisely the solutions 
found by Demianski and Grischukl~, 

(ii) V [if the space is locally rotationally symmetric 
(LRS), it will also admit groups of type VIIh in this 
case], 
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TABLE IT. The 3-Ricci tensor for space-times subject to 
(Ai) and (B) in the tetrad (3.1). 

Bianchi-Behr 
group type 

I, VIIo 

IX 

:l-Ricci tensor 

R~B= 0 

Rtl = R12 = R,f:l = ~1112 > 0 

Rtl = R12 = R[1 = - 202 < 0 

Rtl=-402, R~2=-202, 
RTl = - '202 , R11 = '!,(/2 

(iii) VL j with a = il2 = -113' 

Proof: Theorem 303 implies that these solutions must 
be Kantowski-Sachs or admit one of the following 
Bianchi- Behr groups: I, VIIo, IX, V, VIIh, Or VL j with 
suitable restrictions, Kantowski 12 has shown that the 
Kantowski-Sachs solutions III1Ist satisfy (D), The Ricci 
3-tensors of the allowed Bianchi- Behr type solutions 
appear in Table II, Notice that solutions admitting 
groups of Bianchi- Behr types I, VIIo, IX, VIIh, and V 
have hypersurfaces of homogeneity with isotropIC 
R~8' In a 3-space, an isotropic Ricci tensor is equiv­
alent to constant curvature, 16 From Theorem 4.2 of 
Ref. 17 we see that such solutions are "tilted" ri. eo , 
do not satisfy (D) I only if they admit a group of type V 
Or are Demianski-Grischuk solutions, The Demianski­
Grischuk solutions admit a tvue VIL, group. 17 The LRS 
type V solutions also admit a one-parameter family of 
type VIIh groups. 1 Q. E. D. 

Lemma 3. 5: Any space-time that satisfies (A), 
(B), (C), and (D), and which admits a group of type IX 
is Robertson- Walker. 

Pyoof: From Theorem 3.3 we see that 111 = 112 = 113 '* 0 
so the Jacobi identities of the tetrad [Eqs. (2.12) in 
Ref. 11 imply 81 = 02 = 83• Q. E. D. 

TABLE III. A summary of results from Sec. :l. 

Lemma 3.6: Any space-time satisfying (A), (B), 
(C), and (D) which admits a type VIIo, VIIh, Or VL1 
group is LRS. 

Proof: From Theorem 3.3 we see that in the type 
VIIo case III = 1l2, in the type VIIh case 112 = 113 and in the 
type VL1 case 112 = - 113, Again Eqs, (2,12) of Ellis and 
MacCallum 1 imply 81 = ti2, 82 = ti3 and H2 = 83, respec-
tively. From Ref. 1 then, all cases are LRS o Q. E. D. 

Note that the Kantowski-Sachs solutions are LRS 
since they have a nontrivial isotropy subgroup. Ellis 
and MacCallum! have shown that LRS solutions which 
satisfy (A), (C), and (D); admit a group of Type I if and 
only if they admit a group of type VIIo; are Robertson­
Walker if they admit a group of type VIIh or V, We sum­
marize these results in the following theorem. 

Tlzeoye m 3.7: Any space- time that satisfies (A), (B), 
(C), and (D), and which is not also LRS admits a group 
of type I Or type V. 

Table III summarizes the results of Sec. 3. 

IV. DISCUSSION 

A study of the Szekeres solutions suggests that the 
assumption of conformally flat, spacelike slices may be 
a fruitful one when searching for inhomogeneous cosmo­
logical solutions to the Einstein equations. The results 
of Sec. 3, summarized in Table ill, indicate that any 
family of inhomogeneous solutions with conformally flat 
slices can only contain spatially homogeneous solutions 
invariant under groups of type I, VIIo, IX, V, VIIh' or 
VLj, Or be of the Kantowski-Sachs form. The Szekeres 
solutions extend a subset of the above listed spaces 
r containing the Robertson- Walker solutions, the 
Kantowski-Sachs solutions, and those LRS solutions 
admitting a group of type VI_lor both types I and VIIo 
(Theorem 204) 1 to a family of inhomogeneous, perfect 
fluid solutions. The extended family has 

Space-times that satisfy Space-times that satisfy 
Space-times satisfying Those which satisfy 
(A) (A) and (B) 

Those which satisfy (A), 
(B), (C) but not (D) 

(A), m), (C), in) but (A), (B), (C), and m), 
are not LRS and are LHS 

VITo 

IX 

v 

K-S 

II, Vlo, VII, 
IV, VI,.._1 

all 

all 

all 

none 
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none 

some (the Demianski­
Grishchuk solutions, 
all of which have 111 

= 112) 

none 

some 

some (only those that 
also admit a V group) 

some of those with 

none 

none 

some (those not admit- some (those also admit-
ting a VIlo group) ting a VIIo group) 

none 

none 

some (those that are 
not R-\V) 

none 

none 

none 

none 

all with 111 ~ II:: (these also 
admit a I group) 

all with 111 = 112 = II:; 

(these are all H-\\,) 

some (only the H-\\' 

ones) 

all with II:> = I':i 

(these are all H-\\') 

allwithll?C-1I 

311 

none 
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(a) irrotational, geodesic flow and an expansion 
tensor with two equal eigenvalues 

(b) conformally flat, comoving hypersurfaces whose 
Ricci tensor has two equal eigenvalues 

(c) a nonbarotropic equation of state, 

Our results indicate that, if one wishes to generalize 
that subclass to perfect- fluid solutions satisfying (b) 
and having a barotropic equation of state, then some 
portion of property (a) must be discarded, If one dis­
cards either geodesic flow or two equal eigenvalues 
for the expansion tensor, then the extension must in­
clude other spatially- homogeneous models in addition 
to those listed in Theorem 2.4, 

ACKNOWLEDGMENTS 

One of us (A. S. ) wishes to thank the Department of 
Applied Mathematics at the University of Waterloo and, 
especially, Dr. C. B. Collins for their hospitality dur­
ing his visit. We would also like to thank Dr. J. 
Wainwright for comments and suggestions. 

APPENDIX A: TETRAD FORM OF THE EINSTEIN 
EQUATIONS FOR THE SZEKERES METRIC 

Given the Szekeres metric (2.2), choose the ortho­
normal tetrad: 

-8 a e2 = e -;-, uy 
(AI) 

whose commutators are 

[eo,e",l=- 8",e", (no sum), 

[ej, e21 = (n13 - 1l2) el + ale2, 

(A2) 

(A3) 

[e2, e31 = (n12 - a 3) e2 + (1113 + (2) e3, (A4) 

[e3, ell = (n12 + (3) el - 1l1e3, (A5) 

with 

82 = 83• (A6) 

The Einstein field equations 8 are then 

20(81 + 282) + (81)2 + 2(82)2 + i(iJ. + 3P) = 0, (A7) 

a182 + (8 1 - 82) al = 0, (AB) 

c2(81 + 82) + (82 - 81) (a2 - nd = 0, (A9) 

03(81 + 82) + (82 - 81)(a3 +nd = 0, (AlO) 

00 8",+ 88",=-R",,,,+ HIl-p) (no sum), (All) 

where 

8= 81 + 82 + 83. (A12) 

The contracted Bianchi identities are 

coil + (11 + p)(81 +282) =0, (A13) 

acP=oo (A14) 

APPENDIX 8 

The nonvanishing rotation coefficients 

r "'8y= i(EaY611~ +E",oon/- EY0I6na6 + 20,.8'1",- 20",aay) 

1541 J. Math Phys., Vol. 19, No.7, July 1978 

in the tetrad (3,1) where 

are 

r 122 =- r221=rI33=- r 331 =a, 1"123=- 1'321 

= 1(111 +113- 112), (Bla) 

1"132=- r231=~(-111-n2+1l3)' 

r 213 =- r312=t(nl-112-n3), 
(BIb) 

The 3-Ricci tensor given by (3.6) in the tetrad (3,1) is 

Rtl =111(111- 112 - 113) - N, R~2 =n2(112 - III - 113) - N, 

(B2a) 

(B2b) 

Rf2 = Rj3= 0, 

where 

(B2c) 

N = 2a2 
+ t(n1

2 
+ fl22 + 1132) - (111112 + 171113 + 112113)' (B2d) 

The independent equations (3,5) in the tetrad (3.1) are 

Rt23 = 0 ='.21113 
- n23 - fl3

3 - n12n2 - 1712nS + n21132 

(B3) 

R{31 = O:=:" 2112 3 - 111 3 - fl3
3 - 111/122 - 1122n3 + n11132 

+ n12113 

+2a2(n3- n2)=0, 

(B4) 

Rt31 = 0 :=:" a(2n/ + 3n22 - 3H32 + nln3 - 3nl1l2) = 0, (B5) 

R{21 = O:=:" a(2n/ + 31132 - 3112 2 + nln2 - 3nln3) = O. (B6) 
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A unified treatment of null and spatial infinity in general 
relativity. I. Universal structure, asymptotic symmetries, 
and conserved quantities at spatial infinity 

Abhay Ashtekara) 

Enrico Fermi Institute. Chicago. Illinois 60637 

R. O. Hansenb) 

Mathematics Department, University of California, Berkeley, California 94720 
(Received 12 September 1977) 

A new definition of asymptotic flatness in both null and spacelike directions is introduced. Notions 
relevant to the null regime are borrowed directly from Penrose's definition of weak asymptotic simplicity. 
In the spatial regime, however, a new approach is adopted. The key feature of this approach is that it 
uses only those notions which refer to space-time as a whole, thereby avoiding the use of a initial value 
formulation, and, consequently, of a splitting of space-time into space and time. It is shown that the 
resulting description of asymptotic flatness not only encompasses the essential physical ideas behind the 
more familiar approaches based on the initial value formulation, but also succeeds in avoiding the global 
problems that usually arise. A certain 4-manifold--called Spi (spatial infinity)-is constructed using well­
behaved, asymptotically geodesic, spacelike curves in the physical space-time. The structure of Spi is 
discussed in detail; in many ways, Spi turns out to be the spatial analog of 1. The group of asymptotic 
symmetries at spatial infinity is examined. In its structure, this group turns out to be very similar to the 
BMS group. It is further shown that for the class of asymptotically flat space-times satisfying an 
additional condition on the (asymptotic behavior of the "magnetic" part of the) Weyl tensor, a Poincare 
(sub-) group can be selected from the group of asymptotic symmetries in a canonical way. (This additional 
condition is rather weak: In essence, it requires only that the angular momentum contribution to the 
asymptotic curvature be of a higher order than the energy-momentum contribution.) Thus, for this 
(apparently large) class of space-times, the symmetry group at spatial infinity is just the Poincare group. 
Scalar, electromagnetic and gravitational fields are then considered, and their limiting behavior at spatial 
infinity is examined. In each case, the asymptotic field satisfies a simple, linear differential equation. 
Finally, conserved quantities are constructed using these asymptotic fields. Total charge and 4-momentum 
are defined for arbitrary asymptotically flat space-times. These definitions agree with those in the 
literature, but have a further advantage of being both intrinsic and free of ambiguities which usually arise 
from global problems. A definition of angular momentum is then proposed for the class of space-times 
satisfying the additional condition on the (asymptotic behavior of the) Weyl tensor. This definition is 
intimately intertwined with the fact that, for this class of space-times, the group of asymptotic 
symmetries at spatial infinity is just the Poincare group; in particular, the definition is free of super­
translation ambiguities. It is shown that this angular momentum has the correct transformation properties. 
In the next paper, the formalism developed here will be seen to provide a platform for discussing in detail 
the relationship between the structure of the gravitational field at null infinity and that at spatial infinity. 

1. INTRODUCTION provided a baSis for later work5 due to Newman, 
Newman and Penrose, Schmidt, Winicour, and 
others. These investigations have been crucial to 

There are two distinct regimes in which the 
asymptotic behavior of the gravitational field has 
been investigated in detail1: at large separations from 
sources in null directions, and in spacelike direc­
tions. These investigations have yielded a great 
deal of information about properties of gravitating 
systems, information which has been crucial to the 
construction of mathematical models of isolated 
systems in general relativity. 

In the null regime, the asymptotic structure was 
first examined in detail by Bondi, Van der Berg, 
and Metzner2 and Sachs;3 their results were reformu­
lated and extended by Penrose. 4 Penrose's analysis 

alSupported in part by the grant S/GA/057. 5 from the SRC to 
the University of Oxford and NSF contract PHY 76-81102 
with the University of Chicago. 

the study of radiation-especially gravitational 
radiation-and also to the development of several 
ideas concerning global issues in general relativity. 
In particular, a great deal of the analysis of black 
holes, singularities, and, more recently, of H­
spaces and of asymptotic quantization of zero rest­
mass fields relies heavily on concepts introduced 
originally in the investigation of null infinity. In the 
spatial regime, major developments first came from 
the work of Arnowitt, Deser and Misner, 6 and 
Bergmann. 7 This work was later reformulated and 
extended by Geroch. 8 Independently, investigations 
have been made by O'Murchadha and York, Regge 
and Teitelboim, and others. 9 All these developments 
have also played an important role in the analysis 

blSupported in part by grant B/RG/513. 4 from the SRC to the 
University of Oxford and NSF contract PHY 77-15191 with 
the University of California, Berkeley. 

of global problems. In particular, they have pro­
vided a basis for examining issues such as the posi­
tivity of (total) energy in general relativity, the 
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superspace formulation, and canonical quantization 
of gravity. 

The key idea in both4,8 sets of investigations is the 
following: One uses conformal transformations to 
bring "infinity" to a "finite distance"-more pre­
cisely, to attach suitable boundaries representing 
infinity-and then explores the asymptotic structure 
of the gravitational field by applying techniques from 
local differential geometry at pOints representing 
infinity. This procedure has several advantages: It 
avoids the heuristic considerations otherwise in­
volved in taking limits, is manifestly coordinate 
independent, and, furthermore, simplifies compu­
tations. Vigorous work has been carried out using 
these techniques and a rich conceptual and mathe­
matical structure has arisen in each regime. 1 

Unfortunately, however, very little is known 
about the connection between the two. Does asymp­
totic flatness in one regime, together with some 
simple and natural conditions, imply asymptotic 
flatness in the other? 10 In each regime, there arise 
groups of asymptotic symmetries. Is there any 
relation between these groups? Is there any relation 
between the conserved quantities which emerge from 
these groups? Not only are these issues unresolved, 
but in most cases, one does not know even how to 
formulate precise questions. Consider, for example, 
the notion of energy-momentum. In the spatial 
regime, one associates with isolated bodies a set of 
four numbers-the ADM 4-momentum-which repre­
sent the "total 4-momentum of the entire system in­
cluding gravitation. 6,8" In the null regime, one in­
troduces another quantity-the Bondi 4-momentum­
which represents the 4-momentum "left over" at a 
retarded instant of time. 2,4 It is natural to conjecture 
that the "difference"-in an appropriate sense­
between the two quantities would represent the 4-
momentum which has been radiated away until the 
retarded time under consideration. Unfortunately, 
the two existing descriptions are so disconnected 
from each other that it has not been possible to 
obtain even a precise formulation of this conjecture, 
let alone its proof or disproof! The essential diffi­
culty is that the two vectors-as constructed-belong 
to entirely different vector spaces; hence one cannot 
even introduce the notion of their difference. 

Why have the two formulations remained so dis­
joint from each other? It turns out that, in spite of 
close Similarities, the two do differ from each other 
in a fundamental way: Whereas the standard frame­
work for describing null infinity respects the four­
dimensional character of space-time, that for 
spatial infinity requires a splitting of space-time 
into space and time. This difference permeates the 
two sets of analyses thoroughly. Thus, in the null 
regime, the asymptotic conditions refer to space­
time as a whole, while in the spatial regime, they 
refer to spacelike 3-surfaces. As a consequence, 
null infinity turns out to be a boundary of the space­
time manifold itself, and the physical fields which 
enter the discussion are all "four-dimensional" 
ones-the space-time metric, its curvature tensor, 
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and various zero rest-mass fields. Spatial infinity, 
on the other hand, arises as a boundary of a space­
like three-surface and fields of interest in this case 
are all "three-dimensional" ones-Cauchy data for 
gravitation and matter fields. Thus, the usual formu­
lation in the null case is "four dimensional" in spirit 
while the one in the spatial case is "three-dimen­
sional." The essential reasons which have kept the 
two sets of analyses disjoint from each other can 
be traced back to this difference. Hence, a frame­
work which attempts to unify the two must first 
overcome this difference: One of the two descriptions 
needs to be reformulated in the spirit of the other. 

From aesthetic considerations, it is clearly the 
spatial description that needs reformulation. Techni­
cal considerations lead to the same conclusion: 
Quite apart from the issue of unification, the "three­
dimensional" aspect of the usual description leads 
to some awkwardness in the spatial regime itself. 

Recall6,s that, in this description, a space-time 
is said to be asymptotically flat at spatial infinity if 
it admits a surface on which the initial data approach 
the data on 3-planes in Minkowski space at an appro­
priate rate as one goes to infinity in spacelike direc­
tions. Unfortunately, however, the existence of one 
such Cauchy surface does not guarantee the existence 
of a "sufficient number" of them. Already for linear 
fields in j1;Jinkowski space, analogous results require 
a great deal of care in one's choice of asymptotic 
conditions: Even apparently minor modifications of 
the "correct" conditions have the effect that although 
the modified conditions are satisfied on one space­
like plane, after evolution, they need not be satisfied 
on a boosted one. 11 In general relativity, the situation 
is further complicated first by the absence of a 
"background" geometry and second by the nonlinear­
ity of field equations. Indeed, the present state of 
affairs is again such that one does not even know how 
to formulate appropriate questions. ConSider, for 
example, the notion of two Cauchy surfaces "boosted" 
relative to each other. In the usual descriptions of 
spatial infinity a precise formulation of this notion 
has always run into some global problem or an­
other. 12 Hence, strictly speaking, one cannot even 
ask if asymptotic flatness of initial data sets will 
be preserved under boosts. The general procedure 
adopted so far essentially ignores all such global 
issues and just assumes-although often implicitiy­
that if there exists one asymptotically flat data set 
in the given space-time, then there exist "a suffi­
cient number" of them. This assumption permeates 
the entire anal1sis and weakens many results 
substantially. 1 

All these considerations motivate the need of a 
new description of the asymptotic structure of the 
gravitational field at spatial infinity; a description 
which is "four-dimensional in spirit, " which is free 
of global problems and which will serve as a platform 
for unification of the results obtained separately 
in the two regimes. Our purpose here is to obtain 
such a description. In the next paper, we shall dis­
cuss in detail the relation between the various notions 
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introduced here in the spatial regime and their 
well-known analogs in the null regime. 

The basic ideas underlying this work may be sum­
marized as follows. In the null regime, we shall 
borrow the notion of asymptotic flatness directly 
from the traditional one-i. e., from Penrose's14 
definition of weak asymptotic simplicity. In the 
spatial regime, however, we adopt a new approach. 
To see this, consider, first Minkowski space-time. 
Recall that in the standard conformal completion, 
one obtains as its boundary not only null infinity 
!J, but also three additional points, i+, r, and iO. 
These three points represent, respectively, future 
timelike infinity, past timelike infinity, and spacelike 
infinity of Minkowski space. 15 The key idea in the 
new approach is to attach to space-times which are 
to be regarded as asymptotically flat, not only!J but 
also a point "analogous to iO." In the Minkowski case, 
iO can be characterized as the vertex of the "light 
cone at infinity, " i. e., of!J. Therefore, given a 
space-time which is asymptotically flat in the null 
regime, one wishes to regard it as asymptotically 
flat also in the spatial regime provided one can attach 
to its null boundary!) a single point iO such that, in 
the new completion, !) is the null cone of iO. 

The essential difficulty arises of course in the spe­
cification of the details of this completion: One must 
introduce appropriate differential structure at iO and 
impose suitable conditions on the behavior of the 
conformally rescaled metric and of other physical 
fields. The selection of these conditions is a delicate 
issue. If the conditions are too weak, one might have 
too little structure available at iO to introduce physi­
cally interesting notions, or even worse, the com­
pletion might turn out to be so nonunique that the 
resulting analysis might inherit essential ambigui­
ties. If, on the other hand, the conditions imposed 
are too strong, they might accommodate so few 
space-times that the resulting analysis might be 
totally uninteresting. These broad features are of 
course common to any analysis of asymptotics, and 
in particular to the analysis of null infinity. However, 
in the null regime, simplifications arise from the fact 
that!) turns out to be a boundary of space-time. 
Thus, for example, as a direct consequence of this 
fact, smooth fields on the physical space-time 
satisfying conformally invariant equations automati­
cally admit smooth extensions to!) (after appropriate 
conformal rescalings) thereby simplifying the issue 
of differentiability conditions enormously. The situa­
tion is much more intricate in the spatial regime: 
One just does not expect physically interesting fields 
to acquire smooth limits at iO. To see this, consider 
first the Maxwell field of a freely falling point charge 
in Minkowski space. After conformal completion, the 
appropriately rescaled field 0. e., the field which 
satisfies Maxwell's equations w. r. t. to the rescaled 
metric) is Coo on!J. How does it behave at iO? We 
claim that in fact it diverges, and, furthermore, 
cannot be made into a smooth, nonzero field by any 
rescaling using the conformal factor. One can see 
this rather easily geometrically. Fix any 3-plane 
in Minkowski space. Together with iO the plane be-
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comes a compact submanifold-topologically a 3-
sphere-of the completed space-time. Since the 
total charge on a compact spacelike 3-manifold 
must be zero, it follows that there must exist an 
effective "image" charge at iO, and hence that the 
(rescaled) Maxwell field there must diverge in a 
direction-dependent way. The geometrical nature of 
the argument suggests that a similar situation might 
also exist in the gravitational case. This expectation 
is in fact confirmed by examples: The existence of 
a nonzero mass manifests itself in the singularity 
of the Weyl tensor at iO! 16 Thus, except in Minkowski 
space, one does not expect the (rescaled) metric to be 
even C2 at iO. As a result, the discussion of the differ­
entiability conditions to be imposed on various fields 
becomes rather involved in the spatial regime. 

This issue is discussed in Sec. 2, and a new defini­
tion of asymptotic flatness at null and spatial infinity 
is proposed. This definition is completely four dimen­
sional in spirit: It is formulated using only the 4-
manifold and "four-dimensional" fields theorem. 
Consequently, in the resulting analysis, global 
problems normally associated with the evolution of 
asymptotically flat initial data sets simply do not 
arise. However, given a space-time which is asymp­
totically flat in the sense of the new definition, one 
might introduce 3-surfaces and examine the issue of 
evolution of asymptotically flat initial data sets. It 
turns out that, due to the introduction of the point ie, 
not only can one now formulate necessary notions to 
ask preCise questions concerning this evolution, but 
also answer these questions in detail. This issue 
is examined in detail in Appendix B; it is shown that 
space-times which are asymptotically flat in the new 
sense do admit "a sufficient number" of asymptotical­
ly flat initial data sets. We emphasize that this result 
is not directly relevant to our analysis; it merely 
serves to connect the present framework with the 
ones in the literature. Note, however, that we have 
not solved the problems associated with the evolu­
tion of asymptotically flat data sets: The "four-di­
mensional" definition of asymptotic flatness simply 
circumlocutes these problems. In Appendix C we 
discuss the issue of existence of examples satisfying 
the new definition. 

The "direction-dependence" of the limits of various 
physical fields at iO is almost inevitable: One can 
Teach iO by moving away from sources in completely 
different spatial directions. Thus, the essential 
reason behind the intricate behavior of fields at iO 
is simply that iO-the spatial boundary-is a single 
point and that the entire information about asymptotic 
behavior of fields at spatial infinity registers itself 
at this point. One is therefore led to look for a suit­
able "blowing up" of iO which can display all this 
information in terms of smooth fields on the blown­
up structure. In Sec. 3, we present such a blowing­
up procedure. The result is a certain 4-manifold 
which has the structure of a principal fibre bundle 
over the unit time like hyperboloid in the tangent 
space at iO, with the additive group of reals as the 
structure group. This 4-manifold is called Spi­
spatial infinity. 17 The structure it inherits from 
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its construction is examined. Apart from the fibre 
structure, it has a preferred (degenerate) horizontal 
metric (the pull back of the metric on the unit time­
like hyperboloid at iO) and a vertical vector field 
(the generator of the structure group). Intuitively, 
each point of Spi represents "an asymptotically 
distinct way of approaching infinity in spaceUke 
directions," i. e., of approaching iO. Consequently, 
even though physical fields admit only direction­
dependent limits at iO, they induce smooth fields on 
(and, in some cases, on cross sections of) Spi. 
Indeed in the final analysis, the situation at spatial 
infinity turns out to be rather similar to that at null 
infinity. In particular, as far as the universal 
structure at infinity is concerned, Spi plays essen­
tially the same role in the spatial regime as y does 
in the null. This similarity is perhaps to be anti­
cipated: A point of y can also be thought of as a 
distinct way of approaching infinity in null direc­
tions. Similarities-as well as differences-between 
the two regimes are also pointed out in Sec. :3. 

In Sec. 4, we investigate the group (j of asymptotic 
symmetries, i. e., the subgroup of the diffeomor­
phism group of Spi which leaves its universal struc­
ture invariant. In its structure, (j turns out to be 
analogous to the BMS2 group: It has an infinite dimen­
sional, Abelian, normal subgroup-called the sub­
group of Spi supertranslations-and a preferred 
four-dimensional Abelian normal subgroup-called 
the subgroup of Spi-translations-the quotient of 
the full group by the supertranslation subgroup being 
isomorphic with the Lorentz group. Furthermore, 
it turns out that there is a natural homomorphism 
from the group of allowable conformal rescalings of 
the unphysical metric onto the supertranslation 
subgroup. Hence, the full group C; can also be 
realized as the semi direct product of the (quotient 
by the kernel of the above-mentioned homomorphism 
of the) group of conformal rescaIings and the Lorentz 
group. Although this alternative description of the 
group is arrived at in a somewhat indirect fashion, 
it turns out to be the most useful one in the analysis 
of the asymptotic behavior of physical fields. 

This analysis is carried out in Sec. 6. Specifically, 
we consider the zero rest-mass scalar field, the 
electromagnetic field, and the gravitational field. 
(Although the first of these is not of direct physical 
interest, it is included in the discussion to illustrate 
some mathematical techniques.) The (highest order) 
asymptotic behavior of these fields is described, 
respectively, by a scalar field <p, a pair (Ea , Ba) of 
vector fields, and a pair (Eab , B ab ) of second rank 
symmetric trace-free tensor fields on the hyperboloid 
I< of unit spacelike directions in the tangent space of 
iO. (Thus, when regarded as fields on Spi, these 
fields are constant along fibres, reflecting the fact 
that they are invariant under Spi supertranslations.) 
Ea and Ba may be regarded as the asymptotic electric 
and magnetic fields relative to the hyperboloid I< ;18 

and Eoo and Bab , the electric and magnetic parts of 
the asymptotic Weyl curvature. Taking suitable 
limits of the field equations, we obtain the asymptotic 
equations for the asymptotic fields. It turns out that, 
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although in the physical space-time one has nonlinear 
coupled differential equations, in the limit, asymptot­
ic fields decouple and all the nonlinearities disappear. 

Section 6 is devoted to conserved quantities. Since 
iO may be regarded as the "limit" of a sequence of 2-
spheres with increasing radii (in the physical space­
time), one expects to recover from asymptotic fields 
only those conserved quantities-such as total elec­
tric and magnetic charges, total 4-momentum and 
angular momentum-which are expressible as 2-
surface integrals.or limits thereof. (Thus, the situa­
tion is quite different from that at null infinity: Con­
served quantities-such as the energy-momentum 
of test fields in, say, Minkowski space-expressible 
as 3-surface integrals in the physical space-time 
can be recovered from asymptotic fields on J2.) We 
first consider the electromagnetic case and obtain 
expressions for electric and magnetic charges in 
terms of integrals over 2-sphere cross sections of 
the hyperboloid I< involving the fields Ea andBa, 
respectively. We then focus on the asymptotic gravi­
tational fields Eab and Bab • It turns out that the total 
4-momentum-including the contribution of the 
gravitational field itself-of the system can be ex­
pressed in terms of 2-sphere integrals involving 
Eab • (As one might expect, the analogous "con-
served quantity" involving Bab, the "angular momen­
tum monopole, " vanishes identically.) The final 
definitions of all these quantities-the electric 
charge, the magnetic charge, and the 4-momentum­
are essentially the same as those available in 
literature. 6,8,1 However, the present treatment has 
the advantage that, being "intrinsic," it is free of 
coordinate ambiguities, and, being "four-dimensional 
in spirit," it is free of global problems normally 
associated with the issue of preservation of asymptot­
ic conditions under evolution. Finally, we introduce 
a new conserved quantity: the angular momentum. 
For this purpose, we have to make a restrictive 
assumption: It is only when the field Bab onl< van­
ishes that we can define angular momentum. Since 
Eab and Bab together contain information about "11r3 
part" of the Weyl curvature in the physical space­
time, the condition on Boo essentially requires that 
the "11r 3 contribution" should arise only [rom the 
total energy-momentum of the isolated system. This 
condition serves two purposes. First, it enables one 
to introduce certain preferred cross sections on Spi, 
thereby reducing the infinite dimensional group (j 
to the Poincare group. Second, we can now introduce 
a new field which carries information about "the next 
order behavior" of-i. e., the" 1/y4 contribution" 
to-the magnetic part of the asymptotic curvature. 
This new field arises naturally as a tensor field on 
the preferred cross sections of Spi, rather than on 
on 1<; it fails to be invariant under the action of 
translations on these cross sections. Angular mo­
mentum is defined using 2-sphere integrals of this 
field. This definition-being inseparably intertwined 
with the above mentioned Poincare group-is free of 
the usual "supertranslation ambiguities. " 

The material covered in the main sections of the 
paper divides itself into two parts; the first part 
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(Secs. 3 and 4) deals with the universal structure at 
spatial infinity, the second (Secs. 5 and 6), with 
asymptotic fields and conserved quantities. In writing 
the second part, we have deliberately made as little 
reference to the first as possible. Thus, a reader 
interested mainly in conserved quantities may skip 
the discussion on universal structure-especially 
technicalities connected with Spi-without losing 
the main line of argument. 

Before concluding this section, we wish to em­
phasize an important point which is often only im­
plicit in discussions of infinity. General relativity, 
by itself, is a completely self-contained theory 
without the need of any detailed framework describ­
ing infinity: It is only because one is interested in 
capturing the intuitive notion of an isolated system 
in a mathematically precise fashion that one is in­
terested in these frameworks. Therefore, the de­
finitions one introduces, constructions one makes, 
and the notions one formulates in discussing the 
asymptotic structure of the gravitational field are 
arbitrary to some extent; their justification lies 
essentially in their utility. Thus, in principle, it is 
quite possible to have several distinct frameworks 
all of which are useful in different ways. In particu­
lar, the utility of one approach does not invalidate 
any other. The framework presented here is thus 
just one of the many possible ones and, in essence, 
its value lies only in its ability to introduce useful 
notions in the spatial regime and to relate them to 
their analog in the null regime. 

2. ASYMPTOTIC CONDITIONS 

In this section, we introduce a definition of asymp­
totic flatness at null and spatial infinity and discuss 
its relation with definitions used in the other 
formulations. 

The basic idea in the present approach is to use 
the same notion of asymptotic flatness in the null 
regime as in Penrose' s 14 definition of weak asymptot­
ic simpliCity and to simply supplement this definition 
by appropriate conditions to incorporate asymptotic 
flatness also in the spatial regime. How are these 
additional conditions to be chosen? One only has the 
following general set of criteria: (i) conditions should 
be formulated in a "four-dimensional" spirit, i. e. , 
they should not require the introduction of any split­
ting of space-time into space and time; (ii) they 
should be strong enough to yield a sufficiently rich 
structure, a structure which can enable one to 
introduce physically interesting notions at spatial 
infinity and to relate them to those available at null 
infinity; and, (iii) they should be weak enough to 
allow a sufficient number of examples; space-times 
which are "obviously asymptotically flat" from 
physical considerations should, in particular, satisfy 
these conditions. 

How do the conditions usually imposed at spatial 
infinity fare with respect to these criteria? To be 
specific, let us consider Geroch' s8 formulation of 
the Arnowitt-Deser-Misners conditions (ADM-G 
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conditions). Although these are "three dimensional" 
in spirit, they do indeed have the "correct" 
strength: They admit a wide class of examples and 
also enable one to introduce interesting physical 
notions. Thus, what we need is a set of conditions 
which are essentially as strong as these but which 
are more "four dimensional" in spirit; conditions 
which are manifestly free of global problems asso­
ciated with the emphasis on "three dimensions." Let 
us therefore begin with a brief review of the ADM-G 
conditions. This review will also be useful later 
while examing the modifications called for by the 
new approach. The key notion in the ADM-G formu­
lation is that of asymptotically flat initial data sets. 
One introduces this notion as follows. Fix a space­
like surface T with an initial data set (qab,Pab)-the 
intrinsic metric and the extrinsic curvature-satis­
fying the vacuum constraint equations outside some 
compact region representing sources. One adds to 
this T a single point A-the point at infinity-there­
by obtaining a new 3-manifold T. (If T is topological­
ly ]R3 this procedure i,e just the one point compacti­
fication of T, so that T is topologically S3.) Various 
conditions on qab and Pab are now formulated in 
terms of their behavior near A. More precisely, the 
data set is said to be asymptotic~lly flat provided 
there exists a scalar field Q on T which is C2 at 
A, Coo (and g9sitive) everywhere else, such that 
(i) Q I A = 0, DaQ I A = 0, and, nab: = lim~AQ-1/2(Di)bQ 
- 2Q2 qab) eXists as a direction-dependent19 tensor at 
A; (ii) there exists a metric qab on T which is CO at 
A. and Coo. ~.lsewh:r.e with lliAb~ n2qab every~here on 
T, and, (m) i<..ab- hm_An Rab and Pab=hm~Anpab 
exist as direction-dependent tensors at A. (Here 
fla is the derivative op~rator on (T, qab) and Rab ' 
is the Ricci tensor of qab') Conditions (i) and (ii) on 
the conformal factor n and the metric qab are sug­
gested immediately by the standard conformal com­
pletion of the Euclidean space. Condition (iii) [and 
also the precise differentiability requirement in (ii)], 
on the other hand, has a more subtle origin: It arises 
only after a careful investigation of examples. 8 

The idea now is to capture the essence of these 
conditions in a "four-dimensional" spirit. ConSider, 
first, Cauchy surfaces in Minkowski space. To ex­
amine the asymptotic behavior of initial data sets on 
these surfaces !l. la ADM-G one must first complete 
each surface by adding a single point. Note, however, 
that the Penrose completion15 of Minkowski space 
already provides a point, iO, which can simultaneous­
ly serve as the point at infinity for all these sur­
faces! Indeed, in the completed space-time, to­
gether with iO each of these surfaces becomes, topo­
logically, a 3-sphere. Moreover, the point iO itself 
does not refer to any preferred Cauchy surface; it 
can be introduced without having to make any split­
ting of space-time into space and time. The idea 
therefore is to introduce a point analogous to iO in 
more general contexts, a point which is at once the 
point at spatial infinity for all (well behaved) Cauchy 
surfaces. As remarked in the Introduction, this can 
be achieved by just attaching to j'-the null cone at 
infinity-its vertex. Next, we must specify the be-
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havior of various fields at this newly attached point. 
It is here that we draw heavily on the ADM-G con­
ditions: We wish to require that the various space­
time fields-the conformal factor, the rescaled 
metric, its Weyl tensor, and possible matter fields­
have exactly that behavior which can guarantee the 
existence of a "sufficient number" of initial data sets 
which are asymptotically flat in the sense of these 
conditions. More precisely, we wish to require that 
the behavior of fields be such that, given any three­
dimensional, spacelike subspace of the tangent space 
at iO, there exists at least one Cauchy surface (in 
the physical space-time) with an asymptotically flat 
initial data set, whose tangent space at iO in the com­
pletion coincides with the given subspace. If this 
requirement can be satisfied, not only will the re­
sulting asymptotic conditions be of the "correct" 
strength, but they will also be free of the global 
problems discussed in the Introduction. 

The ADM-G conditions on the conformal factor 
can be translated to four dimensions in a straight­
forward way; one has only to replace the 3-metric 
and the corresponding derivative operator by the 4-
metric and its derivative operator. The continuity 
requirement on the 3-metrices can be satisfied only 
if the rescaled 4-metric is itself continuous at iO. 
The requirement on extrinsic curvatures, however, 
is more severe: Since the extrinsic curvature in­
volves the metric connection, the continuity of the 
rescaled metric, by itself, cannot guarantee the 
existence of even a single initial data set satisfying 
this requirement. One is therefore led to impose 
stronger conditions on the 4-metric. It is here that 
major complications arise. Consider, first, the 
obvious way to achieve the required strengthening. 
Demand that the rescaled 4-metric be C1 at iO. This 
condition would indeed do the job: It does guarantee 
the existence of a "sufficient number" of asymptoti­
cally flat initial data sets. Unfortunately, however, 
the condition is too strong: It turns out (as we shall 
see in Sec. 6) that discontinuities in the (rescaled) 
metric connection are, in essence, a measure of 
the total mass of the isolated system described by 
the given space-time, and hence, that the ADM 4-
momentum associated with the space-time vanishes 
identically if the (rescaled) metric is Cl at i O! 20 
Thus, one is forced to make the awkward require­
ment that the 4-metric be better behaved than a 
CO fie ld but not be C 1 at iO. As the above remark on 
the ADM 4-momentum suggests, the appropriate 
condition turns out to be the following: Demand that 
not only should the metric be CO at iO, but also the 
metric connection should admit a direction-dependent 
limit there. Finally, consider the ADM-G condition 
on the three-dimensional Ricci tensor. It is straight­
forward to show (using the source-free Einstein's 
equation) that one can translate this condition to a 
condition on the Weyl tensor of the 4-metric which 
is guaranteed to be satisfied by the differentiability 
requirements on the metric. Thus, we are led to 
the following definition. 

Definition: A space-time (M, gab) will be said to 
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be asymptotically empty and flat at null and spatial 
infinity (AE F ANSI) if: 

(i) There exists a manifold M with boundary 
(8M= :j) equipped with a (C3Lconformal structure, 
and, an imbedding of Minto M which displays (M, 
gab) as a weakly asymptotically simple space-time, 

(it) There exists a manifold M with a (Lorentz) 
metric gab and a_conforp1al-structure-pr£.serving 
imbedding Ij; of Minto M (which is C4 on M), 

(iii) There exists a point iO in M: with the following 
properties: 

(a) :M has a C>1 differential structure at iO, and 
~ is C>O at iO 21 
.sab ' 

(b) In M, I/!(j) is the null cone of iO, 

(c) The function n defined on 1jJ(M) via I/!*(gab) 
= n2f{ab admits a C2 extension at iO, with nl j ° = 0, 
(~anl jO= 0, (~a ~bn- 2gab ) I jO= 0; and finally, 

(i v) The Ricci" tensor Rab of gab vanishes in the 
intersection in M of the image of the physical space­
time with some neighborhood of j u iO. 

In essence, condition (i) guarantees that the space­
time is asymptotically flat in null directions, while 
conditions (it) and (iii) ensure that it is asymptoti­
cally flat in spacelike directions, and that the 
structures arising in the two regimes are as com­
patible as possible. 22 [The differentiability require­
ments (iii. a) on eM, gab) just assures that the metric 
connection admits a regular direction dependent 
limit at iO-1. e., has smooth "angular" behavior but 
possibly finite discontinuities in the "radial direc­
tions." For the definition of c>n differentiability, 
see Appendix A. 1 The manifold has been introduced 
in the definition just to inc lude iO 23-the point at 
spatial infinity-together with its differential and 
conformal structure in the completion; a simple 
attachment of iO to M would have resulted in a 
"manifold with a corner, "which, in turn, would 
have prevented us from making a straightforward 
use of local differential geometry at iO. [The pre-
cise differentiability requirements in condition (ii) 
are motivated by examples. For details, see 
Appendix c. 1 Finally, we note that the various con­
ditions in the definition can also be motivated with­
out any reference to the ADM-G formalism: Con­
ditions (j), (ii), and (iii. b) are geared to incorporate 
the intuitive idea that "io be the vertex of the light 
cone of infinity;" (iii. c) ensures that the conformal 
factor n has the same asymptotic behavior (near iO) 
as in Minkowski space, 1. e., that it "falls off as 
1/ r2;" and, as shown in Appendix A, the differentia­
bility requirements imposed via (iii. a) are precisely 
such as to ensure that Weyl curvature "falls off as 
l/r 3" in the physical space-time. 

As explained in the Introduction, in this paper we 
are concerned more with the structure of spatial 
infinity than with the detailed relation between spa­
tial and null infinity. Consequently, for the purpose 
of this paper, of all conditions in the definition, only 
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condition (iii. a) on differentiability of the metric 
gab at i O, (iii. c) on the behavior of the conformal 
factor rl, and (iv) on the Ricci tensor Rab will be of 
direct relevance. The other conditions will play an 
important role only in the next paper. 

It follows directly from the above definition that 
every point in the physical space-time [more pre­
cisely, of its image if!(M) in Ml is spacelike related 
to iO. As a consequence, the point iO serves as the 
''spatial boundary" of the physical space-time very 
much as the :3-surface j' serves as the null boundary. 
The fact that the spatial boundary consists of a single 
point is perhaps the most important aspect of the 
above completion; an aspect which adds to the com­
pletion complexity in some ways and richness in 
other. Thus, for example, the intricacy of differ­
entiability requirements at i O can be easily traced 
back to this aspect: It is because i O is a single point 
that the limits attained by physical fields on space­
time are forced to be direction-dependent. On the 
other hand, iO provides us with a preferred point in 
the completed space-time and this turns out to be 
useful in many ways. For example, isometries in 
physical space-times can be characterized and 
classified rather easily by examining their exten­
sions to iO. 20 Furthermore, the tangent space at i O 

will be seen to provide a natural home for various 
conserved quantities-ADM and BMS 4-momenta, 
multipole moments in the stationary case, etc.­
making it easy to investigate the relation between 
them. 

Note that, although the definition of AE F ANSI 
space-times was arrived at by using the ADM-G 
framework, in the final verSion, the definition itself 
makes no reference to initial data sets; it refers 
only to "space-time" fields. Hence, in the present 
formulation, global problems associated with pre­
servation of asymptotic conditions under evolutions 
simply to not arise. Nonetheless, having obtained the 
notion of AEFANSI space-times, one can, if one 
wishes, introduce spacelike 3-surfaces and ask for 
the status of these evolutions. It turns out that a 
complete analysis of this issue can be made. First, 
one can show that AEFANSI space-times do admit 
"a sufficient number" of asymptotically flat initial 
data sets: Given a spacelike, three-dimensional 
subspace of the tangent space at i O, there exist as 
many asymptotically distinct space like 3-surfaces 
with asymptotically flat initial data sets in the phys­
ical space-time, which, in the completion, are tan­
gential to the given subspace at fa, as there are func­
tions on a 2-sphere. Next, using the tangent space 
at i O, one can now introduce, unambiguously, the 
notion of Cauchy surfaces which are boosted or time­
translated with respect to each other. Therefore, 
one can meaningfully formulate questions about evolu­
tions. Finally, using techniques from local differ­
ential geometry at i O, one can also answer these 
questions in detail: Evolutions which are asymptoti­
cally regular do preserve the ADM-G conditions. 
Thus it appears that AEF ANSI space-times offer 
an ideal home for discussions involving asymptoti-
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cally flat initial data sets. Since in this paper we 
use only those notions which refer to space-time 
as a whole, a detailed discussion of the results 
quoted above has been relegated to Appendix B. 

Finally, we remark that condition (iv) in the de­
finition of AEFANSI space-times can be relaxed 
to admit zero rest-mass fields in a neighborhood of 
infinity. 24 Since, in a curved space-time, con­
formally invariant zero rest-mass equations are in 
general consistent only for spins less than ~, we 
need to consider only these fields. Then (iv) may be 
replaced by: 

(iv)' Fields $, ~A' Fab satisfying the zero rest­
mass equations on (M, g~b) for spins 0, ~, and 1, 
respectively, are permissible sources at infinity 

A 'I. A 

provided ¢, PA' and Fab admit smooth extensions to 
j', and, rl 1/ 2¢, rl 3/ 4if!A' and rlFaS admit regular 
direction-dependent limits21 at i . 

Here the conditions on the behavior at!) are the 
usual4 ones. Those at i O are motivated by the ones 
required in Minkowski space to guarantee finiteness 
of energy-momentum and, in the case of Maxwell 
field, also the finiteness of total charge. 

I. UNIVERSAL STRUCTURE AT SPATIAL INFINITY 

3. SPI 

In the previous section, we introduced the notion 
of AE F ANSI space-times. In a sense, all that now 
remains is to examine the behavior of various phys­
ical fields in the neighborhood of the boundary 
.9 c...J i O, to introduce conserved quantities, and to 
obtain relations between them. However, the fact 
that i O is a single point introduces complications in 
such a program. In particular, various physical 
fields admit only direction-dependent limits at i O 

and hence it is rather awkward to examine their 
behavior using only the framework introduced so 
far. What is needed is Some sort of "blowing up" of 
iO: One might hope that in the limit, physical fields 
will register themselves as smooth fields on an 
appropriate blown-up structure. The purpose of this 
section is to obtain such a structure. Quite apart 
from simplifying the analysis of asymptotic fields, 
this blowing up turns out to be valuable in its own 
right. In particular, we shall see that it provides an 
arena for describing the universal structure in the 
spatial regime and plays a key role in the discussion 
of asymptotic symmetries. 

How is this blowing up to be achieved? What is 
needed is an appropriate modification of the standard 
blowing-up procedures used in algebraic geometry; 
a modification which can incorporate the additional 
differentiable and metric structures available. Let 
us therefore begin by examining these structures. 
Consider first the differentiable structure. The com­
pleted manifold M is only guaranteed to be C>l at iO. 

Hence, using the differentiable structure one can only 
construct the first- and second-order tangent spaces 
there. Intuitively, this means that one cannot dis­
tinguish between two geometrical structures-e. g. , 
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submanifolds of 1\1-which agree up to second order 
at in; indeed, one cannot even examine their higher­
order behavior! This lack of distinguishability gives 
rise to severe constraints on the possible directions 
to proceed: One must obtain the required blowing up 
using only the first- and second-order behavior of 
geometrical objects at iO. 

Two classes of such objects at once present them­
selves: spacelike, three-dimensional submanifolds, 
and spacelike curves in eM,gab)' Intuitively, these 
represent two distinguished classes of paths to 
approach spatial infinity; in the physical space-time 
one can move away from sources along spacelike 
Cauchy surfaces or along inextendible space like 
curves. It turns out that the use of either one of 
these leads to essentially equivalent blown-up struc­
tures. However, the use of curves turns out to have 
two advantages in the analysis of the asymptotic 
behavior of physical fields. First, since these fields 
admit direction-dependent limits at iO, they appear 
as direction-independent-in fact smooth-fields on 
the space of curves while they remains direction­
dependent as fields on the space of Cauchy surfaces. 
Second, it turns out that the use of Cauchy surfaces 
leads to the introduction of the initial value formula­
tion and hence of "spatial" fields while the use of 
curves enables one to deal always with "space-time" 
fields, thereby simplifying the analysis. Therefore, 
in this paper we shall work with spacelike curves; 
equivalence of the resulting blown-up structure with 
the one obtained using Cauchy surfaces will be dis­
cussed elsewhere. 20 

To summarize, we wish to construct the required 
blown-up structure using various asymptotically 
distinct, inextendible spacelike curves in the physi­
cal space-time. The resulting structure will, in 
many ways, be the spatial analog of!);!) can also 
be constructed using certain inextendible curves-the 
null geodesics-in the physical space-time. Note 
that, in the null regime, one does not consider arbi­
trary null curves but only those which are geodesics; 
a point of!) represents a "good" way of approaching 
infinity in null directions rather than an arbitrary 
one. Similarly, in the spatial case, one must specify 
some regularity conditions; we must choose only 
"good" ways of approaching in. Indeed, in the ab­
sence of such conditions, the blown-up structure will 
be infinite dimensional and hence not very useful. 

How are these conditions to be selected? An ob­
vious strategy presents itself: We should impose as 
many regularity conditions as the universal structure 
of AEFANSI space-times permits. First, we have 
C>1 differentiability at in. So we shall require that the 
curves be C>1 at iO and Ql everywhere else. This 
will enable us to examine both velocity and accelera­
tion-the first- and the second-order behavior-of 
curves at in. Next, we have the metric at in. We can 
use it to make demands on the parametrization of 
curves: Only those curves pC,...> (with p E ~ and 
A E lR) are to be allowed for which p(O) is i U and the 
tangent vector at iO is unit. The first of these two 
requirements is rather trivial. The second, how-
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ever, is not: It can be imposed only because the 
metric at iO is universal. Note, in particular, that 
the metric at iO cannot even be rescaled; it follows25 

from conditions on the conformal factor in the defini­
tion of AEFANSI space-times that only such changes 
n - wn in the conformal factor are allowed for which 
w is unity (and C>O) at in, so that the metric at iO is 
conformally invariant. (Note also that we cannot de­
mand the tangent vector to be unit at points other 
than iO since such a requirement would not be con­
formally invariant. ) If the metric at i O were only Co­
rather than C>o-these would be all the conditions 
we could impose. Then "good" ways of approaching 
iO would consist simply of equivalence classes of 
curves (satisfying the requirements stated above) 
where two curves are regarded as equivalent if they 
agree to first order at iO, i. e., if they are tangential 
there. Since each of these equivalence classes can be 
characterized by its tangent vector at in, and since 
these vectors are required to be unit, the collection 
of all "good" ways would naturally acquire the 
stnwture of the unit timelike hyperboloid in the tan­
gent space of in. Thus, using only the CO property 
0f the metriC, the blown-up structure would simply 
be this hyperboloid. 26 

However, the metric is C>o at iO. Hence we can 
indeed distinguish between two curves which differ 
in the second order; not only does each curve carry 
a velocity vector at iO but, for each choice of a 
derivative operator, also an acceleration vector. 
What are the possible regularity conditions on the 
second order behavior of curves? An obvious choice 
is to demand that the curves be geodesics. 27 Un­
fortunately, for spacelike curves, the notion of 
geodesics is not conformally invariant. One must 
therefore select a particular metric in the conformal 
class available. The only distinguished metric in this 
class is the physical metric gaB itself. Unfortunately, 
this gab is not even defined at i . Hence, we must 
first formulate the condition at points near ie, re­
express it in terms of an unphysical metric which is 
well-behaved at iO and then take the limit. Fix a 
space like curve P(A) in 1\1 which is C>1 at i O and C3 

elsewhere. Let 1)a be the tangent vector field to the 
curve. We wish to require that on (M, gab)' 1)a be 
geodesic; Le., that 1)[aAbJ=o where Ab=1)a'Va1)b is 
the acceleration of the curve relative to gab' In terms 
of the metric gab (whose reptriction to Mis n 2gab ), 
this condition becomes 1)[aAbJ + Q-11)[a~bJn = 0, i. e., 
hab(Ab+n-1~bn)=o where Ab=7]a\la7]b is the accelera­
tion of the curve relative to Kab and l~b = P:ab 

- (gqprl'7]qr17]a7]b is the projection operator in the 3-flat 
which is gab-orthogonal to 7]a. We can 1l0W Atake the 
limit~ The resulting condition is l~m~iohab(Ab 
+ n-1\7bn) = O. Note that, although Ab does depend on 
the particular choice of the metric from the confor­
mal class, the condition as a whole is conformally 
invariant. Thus, the regularity condition on the 
second-order behavior of curves completely deter­
mines the components of the acceleration of the 
curve (relative to any gab' in the conformal class, 
which is C>O) 2--t iO which are orthogonal to its tangent. 
(lim _ion-1Jlall 'Vbn depends only on the tangent vector 
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to the curve at iO.)28 The component along the tangent 
vector, on the other hand, is completely uncon­
strained and carries all the interesting information 
about the second-order behavior of our curves. We 
summarize. A spacelike curve pCA) in eM,gab)' pass­
ing through iO will be said to be regular if and only 
if (i) it is C>l at iO and C3 elsewhere; (iO it is param­
etrized so that p(O) is iO and the tangent vector to the 
curve, 1]a, is unit at in; and (iii) 1]a satisfies 
lim~iohab(Ab+[2-1~b[2)=O. These are all the regular­
ity conditions we can impose using only that structure 
which is universally present at in: The first of these 
conditions refers to the differentiable structure at 
iO, the second to the metric at iO, and the third, to 
the existence of (a family of conformally related) 
direction-dependent connections. Respectively, these 
conditions demand that regular curves be well­
behaved submanifolds, that they be nicely param­
etrized, and that they be indistinguishable, asymp­
totically, from the geodesics in the physical space­
time. The blowing up of iO will now be obtained from 
the collection of these regular curves. 

Let S denote the collection of equivalence classes 
of regular curves where two curves are regarded 
as equivalent if they have the same tangent and the 
same acceleration at in, i. e., if they agree to first 
and second order there. A point of S can be char­
acterized by the pair (7)a, gab1]aAb)-the common 
tangent vector and the common tangential accelera­
tion of the regular curves in the equivalence class, 
both evaluated at in-where the value of gllb1]aAb is 
governed by the particular choice of the metric in 
the conformal class. 29 Intuitively, each of these 
points represents an asymptotically distinct, "good" 
way of approaching infinity in spacelike directions. 
Thus, S is the blown up iO, 

What structure does this S inherit from its con­
struction? Note, first, that there is a natural pro­
jection mapping 7r from S onto the unit timelike 
hyperboloid I< in the tangent space of in: 7r sends 
each equivalence class of regular curves to the 
common tangent vector they have at iO. Hence, one 
might expect that S can be given the structure of a 
fibre bundle. This expectation is indeed correct. 
Fix a point on the hyperboloid J< and consider the 
fibre F over it. Points of this fibre F represents 
various equivalence classes of regular curves which 
happen to have the same tangent vector at iO. Hence, 
each point of F can be labeled by the tangential com­
ponent of the acceleration of the curves in the corre­
sponding equivalence class. Fix a metric gab' Then, 
for any curve pCA) with tangent vector field 1]a, the 
tangential component a of acceleration is given by 
8=gab~Abl iO=gab1]a1]m-$m1]bl in' Sillce, by the defini­
tion of equivalence, the value of a is the same for 
all curves in anyone equivalence class, the fibre 
F can be coordinatized by a. Recall that the tangential 
component of the acceleration is completely uncon­
strained. Hence, a can assume arbitrary real 
values. It therefore follows that F is homeomorphic 
to the real line. Using these properties, one can 
easily endow S with the structure of a fibre bundle. 
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How does the above coordinatization of fibres 
respond to conformal rescaling? Consider anothcr 
(C>O) metric gab in the available conformal cl~ss. We 
must have gab = w2gab for some function w on M which 
is C>O at in, C2 elsewhere and which satisfies wi iO 

= 1. Consider a=gab1)aAb for any given regular curve 
with tan~ent vector 1]a. It is easy to check that a 
= a + havaw lin' Thus, the coordinatization is not con­
formally invariant. (Hence, there is no natural vec­
tor space structure on the fibres.) Note, however, 
that given any two points on the same fibre, say PI 
and h, we have, al - a2 = a1 - a2• Thus, given any 
fibre F, although there is no natural mapping from 
F to the reals, there does exist such a mapping from 
FxF to the reals: Send (Pl,h) to the real number 
G1 -a2• Furthermore, this mapping is onto and its 
kernel is just the diagonal subset of F x F. Hence, 
it induces a natural free and transitive30 action of the 
additive group of reals on each fibre F. Thus, 
(S, JR, f() is in fact a principal fibre bundle31 where 
the structure group ill is just the additive group of 
reals. 

To summarize, the result of the blowing up of 
iO is a 4-manifold which has the structure of a princi­
pal fibre bundle: The base space is the unit time like 
hyperboloid in the tangent space of iO, and the struc­
ture group is the additive group of reals. This 5 will 
be called Spi-spatial infinity. From its very con­
struction, 5 inherits two tensor fields: a covariant, 
second rank, symmetric (degenerate) tensor field 
hab' the pullback to 5 of the natural metric on the 
hyperboloid J<; and a vertical vector field va, the 
generator of the natural, one-parameter family of 
diffeomorphisms on 5 induced by its structure 
group. 32 

Note that conformal rescalings of the (unphysical) 
metric induce, in a natural fashion, certain motions 
on Spi: Since under the rescaling gab - gab = w2 gab' 
the labeling of fibres changes via a -0:=0 
+ (1]a-.$ awl I i 0, one can obtain a natural action of these 
conformal transformations on Spi. (We shall see in 
the next section that the resulting transformations on 
Spi are precisely the supertranslations at spatial 
infinity. ) Since this action leaves each fibre as a 
whole invariant-its projection on I<. vanishes­
effectively, it reshuffles the "second-order" struc­
ture at iO, leaving the "first-order" structure un­
touched. This interplay between conformal trans­
formations in the completed space-time and "sec­
ond-order" transformations at iO is a fundamental 
l.spect of the universal structure at spatial infinity; 
we shall refer to it again in Secs. 5 and 6. 

Finally, we remark that Spi could have been con­
structed via procedures which differ in some re­
spects from the ones used above: There appears to 
exist a great deal of freedom in the precise choice 
of description of the "second-order structure" at 
in, i. e., of fibres of Spi. In particular, we could 
have labeled these fibres using the induced connec­
tions on C>l curves, rather than acceleration. 33 The 
particular procedure employed above is geared to 
bring out the similarity of the construction of Spi 
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with that ofj. Thus, just as each point ofj can 
be regarded, intuitively, as a "good" way of 
approaching infinity in null directions, a point of 
Spi can be so regarded in spacelike directions. 
Furthermore the resulting structures are also very 
similar in the two cases: j and Spi are both fibre 
bundles. As a result, the corresponding groups of 
asymptotic symmetries also turn out to be similar. 
There are, however, some important differences. 
For example, the structure of Spi is more rigid 
than that of j: Spi is endowed with a preferred de­
generate metriC and a preferred vertical vector 
field, while j has available only a (conformal) class 
of such fields. Perhaps the most important differ­
ence is that whereas j serves as a boundary of 
space-time, Spi, being itself four dimensional, 
cannot. 

4. ASYMPTOTIC SYMMETRIES AT SPATIAL 
INFINITY 

Symmetry groups arise in physics as groups of 
transformations which preserve the structure of 
interest. What is the structure relevant to the 
analysis of the asymptotic behavior of the gravita­
tional field at spatial infinity? It is just the universal 
structure of Spi: The fibre bundle character of S, 
the horizontal tensor field hab' and the vertical field 
va. The group of asymptotic symmetries at spatial 
infinity is therefore just that subgroup of the diffeo­
morphism group of S which preserves this universal 
structure. 34 In this section, we shall first investi­
gate this (sub-) group q in detail and then indicate 
how this group will be reduced to the Poincare 
group in Sec. 6. 

Consider, then, diffeomorphisms of S which pre­
serve its fibre structure and leave invariant the 
fields hab and va. Let ga denote the generator of such 
a diffeomorphism. Then, ~a is a vector field on S 
which satisfies, in particular, the following condi­
tions: (i) L~hab=- 0 and (ii) L,va=- O. Note, however, 
that the vector field va is vertical and nowhere van­
ishing. Hence. each fibre of S is just an integral 
curve of this va. Therefore, condition GO above 
already guarantees that the one-parameter family 
of diffeomorphisms generated by ga is fibre pre­
serving. Thus, conditions (i) and (ii) are not just 
necessary but also sufficient to guarantee that (the 
one-parameter family of) diffeomorphisms gener­
ated by ga belong to q. It is obvious that the collec­
tion of all such vector fields has the structure of a 
Lie algebra. We shall denote this Lie algebra by 
L, . 

Fix an element g of L; . Since tvgaoo= 0, we can 
project ~a down to the base space R of S unambigu­
ously. Denote by ~a the projected vector field on 
/(. Then, it follows that t (hab =- 0 on S if and only if 
t,hab = 0 on/(, where 11ab-the projection of hab on 
S-is the natural metric on the hyperboloid 1<. Thus, 
~a is in Lei if and only if (1)' t ehab =- 0 on /(, and (ii)' 
i:va= 0 on S. 

ConSider, first, the case when ga in L - is such 
that its projection ~a on/( vanishes. The~, the con-
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dition (i)' above is trivially satisfied. Furthermore, 
ga is itself a vertical vector field. Hence there exists 
a scalar fieldf, on S such that ta=feva. (Recall that 
va is nowhere vanishing.) Condition (iO' is now 
satisfied if and only if tvf , =- 0, 1. e., if :}nd only if 
f, is the pullback to S of some scalar field f, on k. 
Thus, there is a one-to-one correspondence be-
tween (arbitrary) scalar fields on/( and elements of 
L r, whose projection on/( vanishes. We shall call 
these elements of L~ infinitesimal Spi supertrans­
lations. What structure do we have on the collection 
L 5 of these elements? First, there exists a natural 
vector space structure. (The correspondence be­
tween t a and fe is vector space structure preserv­
ing.) Consider, next, the Lie bracket. Given any 
two elements ~ a and (a of Ls , we have [t, g ')a 
=- [j,v.Je.v]a=o. Thus, Ls is closed under the Lie 
bracket operation; in fact, Ls is an Abelian sub 
Lie-algebra of L~-. ConSider, finally, the Lie 
bracket [p, t)a where fJ.G is in Ls and t a in L;. Then, 
we have ffJ., t )a=- [fJ..Jev ] a = (Llf,l,)va• Furthermore, 
tv(tufe)==tILtvfe=-O. Thus, the Lie bracket [p,~]a 
is itself an infinitesimal Spi supertranslation. 
Therefore, it follows that L; is not only an Abelian 
Lie sub algebra of L.· , but an ideal! 

'; 

Consider the quotient L c, I L j • By its construction, 
L Ii I L f has the structure of a Lie algebra. Each 
element of L<; IL j is an equivalence class of infini­
tesimal Spi symmetries. Denote by {}.ta} the equiva­
lence class to which fJ.a in LJ belongs. Then, {fJ.a} 
={J.l'a} if and only if fJ.·a_fJ.a is an infinitesimal Spi 
supertranslation, and therefore, in particular, a 
vertical vector field in S. Hence, it follows that 
all vector fields belonging to the same equivalence 
class {J.la} give rise to the same vector field lJ,a on k 
when projected. That is, every element of L~ ILs 
has an unambiguous projection. Furthermore, if 
{fJ.a} is a nonzero element of Le; I Ls ' then the pro­
jected vector field ~a is also nonzero. What condi­
tions does the proj ection ~a satisfy? It just satisfies 
the condition (W' above: t ehab = 0 on k. Thus, the 
projection map provides us with a natural, onto, 
linear mapping from the space L ILs to the space 
of Killing fields on V<, hab) with trivial kernel. Hence, 
as vector spaces the two are isomorphic. Further­
more, using the fact that L5 is Abelian, it is easy 
to check that the isomorphism also preserves the 
Lie algebra structure. Recall, however, that the 
Lie algebra of Killing vector fields on a unit hyper­
boloid is isomorphic to the Lie algebra LL of the 
Lorentz group L. Thus, L q ILs is the Lorentz Lie 
algebra. 

We summarize. The Lie algebra L Ii has an in­
finite-dimensional Abelian (Lie) ideal L ( and the 
quotient L c; I L, is just the Lorentz Lie algebra. This 
situation is quite analogous to that in the null re­
gime: The BMS Lie algebra has exactly the same 
structure. The only difference in the two cases is 
the "size" of the supertranslation ideal: Whereas 
Spi supertranslations are in one-to-one correspon­
dence with functions on the 3-manifold/(, BMS 
supertranslations correspond to functions on the 2-
sphere of generators of j . 
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The analogy goes even deeper. Consider the 
functions f(~ onl< of the type f(k)=kaT/a where ka is 
any covector at iO and T/a is the position vector of 
points on the hyperboloid 1<, in the tangent space of 
iO. Next, consider infinitesimal supertranslations 
of the type f(k)v a on S. They form a four-dimensional 
Abelian Lie algebra. Denote it by LT' We claim that 
L T is in fact a (Lie) ideal of L ~ : Given any element 
J1a of L , it is easy to verify that [J1,!(k)v Ja 
= \t.fJ-f(k)va is again in LT • Furthermore, it is easy 
to show that every Killing field in the physical 
space-time gives rise to a unique element of L, , 
and in the case of Minkowski space-time, elem~nts 
of L (- which thus correspond to space-time transla­
tions are precisely the elements of L r .20 Hence, we 
shall call elements of L r infinitesimal Spi-transla­
lions. The existence of this four-dimensional ideal 
is yet another facet of the similarity between the Lie 
algebra L and the BMS Lie algebra. 

j 

We now summarize the implications of the above 
analysis of infinitesimal transformations on finite 
ones, i. e., on elements of g. The group g of asymp­
totic symmetries has an infinite-dimensional Abelian 
normal subgroup-the subgroup 5 of Spi super­
translations. (The vector space of generators of 
these supertranslations is naturally isomorphic to 
that of functions on the hyperboloid 1<.) The quotient 
of e; by this subgroup is just the Lorentz group: e; 
is the semidirect product of the Spi supertranslation 
group and the Lorentz group. Finally, e; admits a 
preferred four-dimensional normal subgroup-the 
subgroup T of Spi translations. Thus, in its struc­
ture, g is very analogous to the BMS group. 35 

We can now discuss the relation between conformal 
transformations on the completed space-time and 
Spi supertranslations, mentioned in Sec. 3. Fix a 
conformal transformation gab - gab = w2 gab' Then 
wi iO= 1 and w must be C>O at iO and C2 elsewhere. 
Recall that, given a metric gab which is C>O at iO, 
each point of Spi can be labeled by the acceleration 
a of the corresponding (equivalence class of) curves 
atAio. Sipce unde:r:gal2--,(fab = W_2gab w,.e have a-El' 
= a + (T/a\7aw) I i 0 "= a +f (where f= (7)a\7 aW) I iO is a smooth 
function on the hyperboloid 1<), the action of the fixed 
conformal transformation on Spi is just the motion 
along each fibre F a parameter distance given by the 
value of J at the point on I< defined (via projection) by 
F. This motion is clElarly the supertranslation de­
fined by the function f on 1<. Thus, there is a natural 
homomorphism from the group of conformal transfor­
mations on the unphysical space-time onto the super­
translation group. (The kernel of this homomorphism 
is, of course, the subgroup of conformal trans­
formations gab - w2gab for which (T/a~ aW) I jO= 0.1 What 
are the conformal rescalings corresponding to Spi 
translations? Since translations arise from functions 
(onl<) of the type f= way/a, it follows that the corre­
sponding conformal rescalings gab - w2g ab are pre­
cisely those for which w is Cl-rather than C>o-at 
iO. (Thus, if the rescaled metric at i O were Cl 
rather than C>O, one could have eliminated the" super­
translation freedom" entirely and obtained, as one's 
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group of asymptotic symmetries at spatial infinity, 
the Poincare group instead of the infinite-dimension­
al groupe;. Note, however, that the presence of a 
Cl metric would imply20 vanishing of the ADM 4-
momentum. ) It is curious that the differentiability 
requirements at iO should govern so many aspects of 
the asymptotic behavior of the gravitational field. 

Finally, consider the issue of the selection of a 
preferred Poincare subgroup of g. Fix in S any 4-
parameter family of cross sections which is left 
invariant by all Spi translations. Consider now the 
subgroup of e; which leaves this family invariant. 
Since the translation subgroup of e; is itself four­
dimensional, it follows that the only supertranslations 
which will leave this family invariant are trans­
lations. As a result, the required subgroup of 0 will 
be a Poincare group. In Sec. 6 we shall see that for 
the class of AEFANSI space-times satisfying an 
additional condition on the asymptotic behavior of the 
Weyl tensor, one can indeed select a translation in­
variant 4-parameter family of cross sections of S 
in a canonical way. Thus, for this class of AEFANSI 
space-times, the group of asymptotic symmetries 
at spatial infinity is just the Poincare group. 

II. PHYSICAL FIELDS AT SPATIAL INFINITY 

5. ASYMPTOTIC FIELD EQUATIONS 

In this section, we examine the asymptotic be­
havior of physical fields (at spatial infinity) and 
obtain the asymptotic field equations. Apart from its 
intrinsic interest, this discussion will prove to be 
crucial for definitions of conserved quantities in the 
next section. 

The present section is divided into four parts. In 
the first, we consider the scalar field, in the second, 
the electromagnetic field, in the third, the gravita­
tional field and, in the fourth, certain potentials for 
the gravitational field. The main ideas in the analy­
sis are the same for all three fields. \Ve begin by 
considering fields which, via conditions (iii, a) and 
(iv)' in the definition of asymptotic flatness (Sec. 2) 
admit regulay21 direction-dependent limits at iO. 
Since the limits depend only on "the direction of 
approach" to in, they induce (smooth) tensor fields 
on the hyperbolOid k of unit spacelike vectors in the 
tangent space at iO. Information about the (highest 
order) asymptotic behavior of fields is now coded in 
the corresponding tensor fie Ids on k. Finally, we 
conSider the equations satisfied by the various physi­
cal fields on the completed space-time, and, by 
taking limits of these equations, obtain the asymp­
totic field equations for fields on!\. 

A. Scalar fields 

The analysis of the asymptotic properties of 
zero rest-mass scalar fields is, by itself, not of 
direct physical interest. The main purpose of this 
subsection is rather to introduce certain mathema­
tical techniques which will be used extensively for 
electromagnetic and gravitational fields later in this 
section. 
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Denote by ¢ a scalar field on the physical space­
time (M,gab) satisfying "'Va"'Va¢ - ~R¢ = 0 where "'V and 
R are respectively the derivative operator and the 
scalar curvature defined by gab' Then ¢ = Q-l¢ 
satisfies4 ~a~a¢ -tR$=o on (M,gab)' Condition (iv)' 
in the definition of asymptotic flatness requires that 
we restrict ourselves to fields for which [1.1/2$ ad­
mits a regular direction-dependent limit at iO. Set 
¢ (1) = lim ~ i oQ 1/2$ where 1)a denote s the (unit) 
tangent to the curve of approach at iO along which the 
limit is taken. Then, ¢ (1) induces a scalar field on 
I< which we shall denote by ¢. It is this ¢ which 
represents the "asymptotic scalar field" corre­
sponding to ¢. Regularity conditions on the limit re­
quire that, on 1<, ¢ be a smooth function and that 
the derivatives aal'" aa ¢(1) of ¢(1) with r;.espect 
to the argument 1)" and the derivatives of ¢ on 
(M, gab) be related via 

a "·8 ¢(1)=lim(Ql/2~ ) ••• (Ql/2~ )Q1/2¢ 
al a" ~io al an' 

Furthermore, the aa derivative turns out to be re­
lated to the derivative operator Da defined on the 
hyperboloid I< by its intrinsic metric hab as follows: 
Dal ••• Da ¢ is the field induced on I< by the direc­
tion depe~dent tensor ha bl ••• hanbnobl ••• Obn¢ (1). 

(For details, see Appenllix A.) In essence, the regu­
larity conditions demand that, as one approaches ie, 
Ql/2¢ have (finite) discontinuities only in "radial 
directions, " i. e., that it be smooth in its" angular 
behavior. " 

We can now obtain the asymptotic field equations 
satisfied by ¢ on!<. Since 

{7a~a¢ = Q-3/2{Q1/2~aQl/2~aQl/2¢ 

_ ~ (~a-9aQ)(Q 1/2¢) _ ¥Ql/2 (~aQ)(~a¢)} 

holds, since liin~io{7aQl/2 is 1)a' the unit tangent 
at iO to the curve of approach, and since21 

1)aoa[Tm'''np'''Q(1) J = 0 for any regular direction-de­
pendent tensor Tm"· n

p ... Q (1), we have the identity 

(2) 

naDa¢ - ¢ = li:1l(~a~a$). (3) 
~t 

We now use the field equation ~a{7a¢ -iR$ = 0 for $. 
Because the metric gab is C>O at iO, Ql/2fl bed admits 
a regular direction-dependent limit there~l and 
hence lim~ioQR= O. Equation (3) therefore reduces 
to 

(4) 

Thus, the (leading order) asymptotic behavior of 
zero-rest-mass scalar fields in the physical space­
time is described by scalar fields ¢ on the hyper­
boloid!< subject to Eq. (4). 

B. Electromagnetic fields 

Fix, in the physical space-time, a Maxwell field 
Fab whose sources are confined to some world tube. 36 
Outside this world tube, we have ~ pb = 0 and 

ab..... a A A 

"'Va*F =0. Set Fab=Fab' Then, on (M,gab)' Fab 
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satisfies ~aftab= 0 and ~a *j:-ab= O. As before, concli­
tion (iv)' in the definition of asymptotic flatness gives 
rise to a restriction on allowable fields: We shall 
consider only those fields for which F ab (1) 

= lim~i0[1.Fab is a regular direction-dependent tensor 
at in. 

As in the case of the scalar field, we first intro­
duce the field on the hyperboloid!< which is to repre­
sent the asymptotic electromagnetic field corre­
sponding to F abO We can, of course, choose for this 
purpose the second-rank, skew tensor field induced 
at each point on the hyperboloid by F ab (1). However, 
since, in general, [Fab (1) ]1)b fails to vanish, the 
induced tensor field will fail to have "its indices 
tangential to the hyperboloid, " i. e., will fail to be a 
tensor field on!<. Hence, we proceed as follows. 
Set Ea (1) = (F b(1))1)b and Ba(1) = (*Fab(1))1)b 

= ~€OZbCd(FCd(1))1)b where €abcd is the alternating tensor 
at i defined by the (universal) metric gab 

(= lim~iogab) there. TIlese fields, Ea(1) and Ba(1) 
(being annihilated when contracted with 1)a) do induce 
vector fields Ea and Ba on!<. Since Fab (1) can be 
reconstructed from Ea(1) and Ba(1) [F ab(1) 

= 2 (E[a(1))1) ]+€abCd1)cBd(1)], it is clear that the pair 
(Ea, Ba) on J-< does contain all the information carried 
by Fab (1). (It follows from regularity of the direc­
tion-dependent limit of Q1I2 Fab that Ea and Ba are 
smooth vector fields on 1<.) One might regard Ea 
as the" asymptotic electric field with respect to 
the hyperboloid 1<" and Ba as the "asymptotic mag­
netic field with respect to /<." (Note, however, that 
I< is timelike. Hence, this decompOSition into 
"electric and .magnetic parts"-although analogous 
to-is not quite the same as the usual decomposi­
tion relative to a given observer. ) 

We are now ready to obtain asymptotic field 
equations. Consider, first, the equation "'VaPb= O. 
Since 

~aftab-= Q-3/2{Q1/2~a([1.Fab) - 2Qftab~aQl/2} (5) 

holds, we have, after taking the limit (and using 
• A 1/2_ ) hm~io"'VaQ -1)a' 

8aF'b(1) + 2Eb(1J) = o. (6) 

Contracting this equation with 1)b and noting that the 
field induced by the direction-dependent tensor 
Ba1)b on/< is precisely the intrinsic metric hab of/<, 
we obtain the first asymptotic equation 

(7a) 

Projecting (6) into the hyperboloid, on the other 
hand, and using the expression for Fab (1) in terms of 
Ea and Ba. we obtain 

D[aBb]=O. (Sa) 

Equations (7a) and (Sa) are). together, completely 
equivalent to lim~ioQ3/2"'VaFab= 0, and hence, can be 
regarded as the asymptotic field equation corre­
sponding to "'VaFab -= O. The second field equation, 
"'Va *Fab=O, yields, Similarly, 

DaBa= 0 (7b) 
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and 

(8b) 

Thus, the (first-order) asymptotic behavior of the 
electromagnetic field is described completely by two 
divergence-free and curl-free vector fields E and B 
on the hyperboloid 1<.37 We shall see in the ne~t a 
section that total electric and magnetic charge (in 
the physical space-time) can be evaluated using 
these asymptotic fields. 

C. Gravitational fields ds 

For simplicity, we shall restrict our detailed 
discussion to the case in which the gravitational field 
is source-free near infinity and only comment brief­
lyon the modifications required by the presence of 
sources. This procedure is appropriate especially 
since the presence of physically interesting sources 
at infinity-the zero rest-mass fields satisfying con­
dition (iv)' in the definition of asymptotic flatness24-

affects only certain intermediate steps in the analy­
sis, leaving final equations completely unaffected. 

Because the Ricci tensor Rob of the physical metric 
gab vanishes near infinity by assumption, the gravita­
tional field there is completely described by the Weyl 
tensor Cabed' As shown in Appendix, the C>o differ­
entiability of gab guarantees that C ab/ (= Cabe d) is such 
that fJ 1/ 2Cab/ admits a regular direction-dependent 
limit Cab/(7)) at iO. This limit describes the asymp­
totic gravitational field to first order. 

Our task now is to obtain smooth tensor fields on 
the hyperboloid I< induced by C abed(7)). To achieve 
this goal, we essentially repeat the procedure used 
in the electromagnetic case. Set Eab(7))=lim~io 
x C ambn(7))7)m7)n and B ab(7)) = lim ~iO *Cambn(7))7)~n 
= €a7npqCPqbn(7))7)m7)n, where €abed is again the alternating 
tensor at iO comparable with the metric gab there and 
where indices are raised and lowered using gab' Note 
that contractions of both E ab (7)) and B ab (7)) with 7)a 
vanish. Hence, E ab (7)) and B ab (7)) induce tensor fields 
on the hyperboloid which we denote by Eab and B ab , 

respectively. It follows directly from their defini­
tion that Eab and Bab are symmetric and trace-free. 
Since C abed (7)) can be expressed in terms of E ab (7)) 

and B ab (7)), the pair (Eab, B ab) onl< may now be re­
garded as the asymptotic gravitational field. We 
shall refer to Eab as the "electric part of the asymp­
totic curvature relative to 1<" and Bab as the "mag­
netic part." 

Finally, we obtain the asymptotic field equations 
for the gravitational field. Since in the physical 
space-time, Rab = 0 near infinity, the only equation 
of interest there is the Bianchi identity 'V[aCbelde= 0 
on the Weyl tensor. In terms of the rescaled metric 
gab = fJ2 gab' this equation becomes 

A A _ -1 A A Ap A A ~ 
'V [mCabled- fJ (gclmC,ablPd'V fJ + gd[mCableP V' fJ). 

(9) 
Using the identity 
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in Eq. (9), multiplying by fJ, and taking the limit of 
the resulting equation, one obtains 

8[mC abled(7)) = ge[mCablPd(T))T)P 

(11) 

Equation (11) is the asymptotic field equation for 
Cabed(T)). To obtain the required equations on Eab 

and Bab , we project Eq. (12) into the hyperboloid /\ 
and contract with T) in all possible ways. The result 
is 

D[aEblc= 0 and D[aBble= O. (1:2) 

Equation (12) is completely equivalent to (11). (Note 
that equations on Eab and Bab are analogous to the 
"curl equations" (8) in the electromagnetic case. 
Why are there no additional "divergence equations" 
analogous to (7)? It is simply because these are 
already contained in (12): Contracting over a and c 
in (12) and using the fact that Eab and Bab are trace­
free, we obtain naEab = 0 and naBab = O. ] 

To summarize, the asymptotic behavior of the 
gravitational field is described completely (to first 
order) by two second rank, symmetric, trace-free 
tensor fields on 1<. The asymptotic field equations­
obtained by taking limits of the Bianchi identity-are 
a pair of linear differential equations on these fields. 
Although in arriving at this description we have 
assumed that the gravitational field is source-free 
near infinity, the final description itself continues 
to be valid in the presence of sources provided the 
stress-energy Tab in (M, gab) remains finite-more 
precisely, admits a regular direction-dependent 
limit-as one approaches iO in M. (In this case, 
only Eq. (9) is modified; the rest of the equations 
remain unaltered.] The stress-energy of the zero 
rest-mass fields permitted by our definition of 
asymptotic flatness does satisfy this condition. 
Thus, the presence of these fields leaves no direct 
imprint on the first order behavior of the asymptotic 
gravitational field: In the asymptotic description, 
these fields simply decouple from the gravitational 
field. 

D. Gravitational potentials 

We now wish to display certain natural potentials 
for asymptotic gravitational fields Eab and B ab • The 
existence of these potentials will play an important 
role in the discussion of conserved quantities. The 
key idea is to use the consequence 

\'7mCabem=~[bSale (1:3) 

of the Bianchi identity on R abed, where Sab = Rab 

- ~Rgab' The fields induced on the hyperboloid I< 
by the limiting behavior of Sab will provide the 
required potentials. 

Since fJ1/2A~bed admits a re~lar dir~ction-depen­
dent limit at i ,21 so does fJ 1/ 2S ab• Set Sab(7)) 

= lim ~iOfJ 1/2~ab' (This limit will turn out not to be 
conform ally invariant. Hence, we retain the "hat" 
even after the limit is taken. All other limits con-
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sidered so far are conformally invariant; we there­
fore dropped the ''hats'' after the limit was taken. ) 
How can we represent this ~ab(7) !..n terI3?-s of smooth 
fields on the ... hyperboloid ~? set E (7) = (8 ab(7))7)a7)0, 

Qa (7) = ha"!,.7) 8m,/7) 7)Pl , and Uab (7) = ha m(7)h"Pl(7) amn( 7). 
Clearl~:. Sab0J) can be reconstructed from the triplet 
(E (7),Qa(7), Uab (7)) .... Furtherm ... ore, contraction with 
7)a annihilates both Qa(7) and Uab (7). Hence, each 
element of the triplet induces a smooth field on the 
h ... y-perboloid J<. Denote these fields by E, Qa' and 
Uab' respectively. 

Next, we wish to show that these fields serve as 
natural potentials for Eab and Bab• Note first that, 
using Eq. (9), Eq. (13) simplifies to 

Cabcm-$mn 

= n (\7lbSale) == n 1/2\7[b (n 1/2 Sale) - n 1I2Sela ~bln 1/2. 
(14) 

Taking the limit of this equation, one obtains 

2 Cabc m (1) )1)m - 8[baale (1) + 1) [b§ale( 1) == O. (15) 

Next, contracting with 1)b and using the expression for 
the D derivative on I< in terms of the (3 derivative, 
one has 

Eao = - !(Di~b + Ehab ). (16) 

Finally, using the asymptotic field Eq. (12) on Eab • 

it follows that Qa = Da~' so that 
1 "',A 

Eab == - 4(DaDbE + .ehab). (17) 

Thus, the scalar field E onl< serves as a potential 
for the electric part of the asymptotic curvature. 
Similarly, contracting (15) with eabPQ1)q one obtains 
the potential Bab , 

... 
Bab == - !EmnbDmKPla, (IS) 

h ... ... 
where l'.nz = Una - Ehna and where fOabe is the natural 
alternating tensor field on (I<, hab). 

While E and Kao are "natural" potentials for Eab 

and Bab-they are obtained by taking the limit of a 
space-time f~eld, which, in (M, gab) serves as a 
potential for Called CEq. (14)]-Bab also admits a 
scalar potential which has no simple interpretation 
in terms of space-time fields. This new potential 
arises from the following fact about fields on hyper­
boloids: Given any symmetric tensor field Tab on 
I< with Dla Tole = 0, there exists a scalar field Ton 
I< satisfying Tab = DaDb T + Thab • Thus, because of the 
field Eq. (12) on B ab , we know that there also exist 
a scalar potential B for Bab with 

Bab=DaDbB+Bhab (19) 

Finally, let us analyze the behavior of E and Kab 
under, conformal rescalings of the unphysical metric. 
Let gab be any other metric in the conformal class 
under consideration. Then g;b= w2gab , where w is 
C>o at i O ~C2 onl<) with wi to= 1. Set a (1) 

= (Iim~toV'aw)1]a and denote by a the scalar field in­
duced on I< by a (1]). Then, it is easy to check that 

E'==E and K~b==Kall- (DaDba +ahab ). (20) 

Thus, E is conformally invariant while ~ is not. 
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(From now on ~e can drop the "hats" over E.) Note, 
however, that ~b is invariant under certain ... con­
formal rescalings: If DaDba +ahab == 0, K~b== ~b' In 
Sec. 5 we saw that there is a homomorphism from 
the group of conformal rescalings onto the group of 
supertranslations on Spi. It is easy to check that 
conformal rescalings which are in the kernel of 
this homomorphism are precisely those for which 
the function a on I< vanishes. Hence, the supertrans­
lation group (on spi) has a natural action on the 
potential Kab • What are the supertranslations corre­
sponding to a's which satisfy DaDba + ahab = O? These 
~re precisely the translations! Thus, the potential 
Kab is invariant under translations but not under any 
other supertranslations. We shall use this fact in 
the next section to single out a preferred Poincar~ 
subgroup of the group of asymptotic symmetries. 

6. CONSERVED QUANTITIES 

This section is divided into two parts. In the first, 
we consider general asymptotically flat space-times 
(in the sense of Sec. 2) and introduce definitions of 
total (electric and magnetic) charge and total 4-mo­
mentum in terms of asymptotic fields. In the second, 
we introduce an additional requirement on the asymp­
totic behavior of the \Veyl tensor and, for the (some­
what) restricted class asymptotically flat space­
times, obtain a definition of angular momentum. 
Since information about dynamics of the system 
cannot register itself at spatial infinity, all these 
quantities-unlike, e. g., the Bondi 4-momentum on 
y-are "absolutely conserved;" they are associated 
with the space-time as a whole. 

A. Charge and 4-momentum 

Recall that, asymptotically, the graVitational field 
completely decouples from the (zero rest-mass) 
sources: E 9ch field satisfies a linear differential 
equation which makes no reference at all to other 
fields. This decoupling simplifies the analysis of 
conserved quantities considerably. In particular, 
in the definition of electric and magnetic charges, 
we need to consider only the asymptotic electromag­
netic field, and, in the definitions of energy-momen­
tum and angular momentum, only the gravitational 
field. 

Fix an asymptotically flat space-time endowed 
with an electromagnetic field Fab and consider the 
asymptotic fields Ea and Ba induced by this Fab on 
1<. Since naEa == 0 and naBa = 0 on 1<, it follow s that 
the right-hand sides of 

and 

QE= r 2 Ea€aocdSbc 
. 13 

(21) 

QB = rs2 Ba€abcdSbc (22) 

are independent of the particular choice of the 2-
sphere cross section 52 of I< used in their evalua­
tion. 38 Q E is to be interpreted as the total electric 
charge and QB' the total magnetic charge, of the 
isolated system under conSideration. One can regard 
the 2-sphere cross sections of I< as being "the limits 
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of sequences of 2-spheres in the physical space­
time as their radii tend to infinity." Since QE and 
QB are independent of the cross section,39 they can 
be considered as "conserved quantities." (This 
definition of charge may seem a bit surprising since 
Ea is not the "limiting" electric field relative to 
any observer, but rather, relative to the (spacelike 
normals to the) hyperboloid 1<. Recall, however, that 
in the physical space-:-time, the total charge is de­
fined as the integral f *Fabdsab over any 2-sphere 
surrounding the charge, i. e., as the average of the 
"t - r component" of Fab over all angles. Since 
Ea(1)) '" Fab (1)h7 b is the "radial component" of the 
asymptotic Maxwell field, the integral in (21) is 
precisely the "average of the t - r component" of 
the asymptotic Maxwell field Fab(1)). Similar remarks 
hold for the magnetic charge. ) 

Next, we wish to introduce the total 4-momentum 
(including the contribution of the gravitational field) 
of the given isolated system. For this, we consider 
the asymptotic gravitational field, i. e., the pair 
(E lb , Bab ) onl<. Since, in special relativity, the 4-
momentum of a system is intimately intertwined 
with the group of translations, one might expect 
the situation to be similar in the present case. This 
expectation is correct: The 4-momentum emerges 
as a linear mapping from the space of translations to 
the reals. Thus, the basic definition of 4-momentum 
is tied with asymptotic symmetries on Spi. How­
ever, we will also be able to give an alternate de­
finition which refers only to the tangent space at 
iO, thereby avoiding technicalities associated with 
Spi. 

Recall, first, that there is a natural vector space 
preserving isomorphism between the space of 
functions on I< and supertranslations on Spi, and 
that functions on l< which thus correspond to trans­
lations are of the type (f(k))(1)) = ka1)a for some vector 
ka in the tangent space of iO. Consider the linear 
mapping 

f(k) - ~ r 2 Eab(Dbf(k)kamndSW'n 
. s 

(23a) 

from the space of translations to the reals, where 
S2 is a 2-sphere cross section of the hyperboloid. 
Using the definition of f(k), it follows that DaD/Jf(k) 
'" - f(k)hab• Thus, D'lf(k) is a conformal Killing field 
on l<. Since Eab is both trace and divergence free, 
it follows that the integral in Eq. (22) is independent 
of the choice of the cross section. Thus, we have 
obtained a conserved quantity which takes values in 
the dual of the vector space of translations. This 
is the total 4-momentum. It is not difficult to show 
that this conserved quantity is essentially the same 
as the ADM 4-momentum. 6,3 (That is, the two agree 
when both are defined. ) In Appendix B, it is shown 
that the present definition yields the expected answer 
for Kerr space-times. Finally, note that one cannot 
obtain a conserved quantity by replacing translations 
in Eq. (23) by arbitrary supertranslations: Unlike at 
null infinity,40 supermomenta do not exist in the 
spatial regime. 

Equation (23) suggests an alternate interpretation 
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of 4-momentum; we may regard it as a covector 
at iO. This interpretation arises because the vector 
field D'lf(k) on l< is precisely the same as the one 
obtained by projecting the constant vector field ka 

into the hyperboloid: Dl>f(k) '" habka = k b - (1)nkmlrl. 

Hence, the covector P a defined by 
P ka=lf· 2(E kb)ea ds mn 

a Z. S ab mn (23b) 

at iO may itself be regarded as 4-momentum. While 
in this interpretation 4-momentum is not directly 
linked with translations-as it normally is in 
physics-there is, nonetheless, the advantage that 
it is now more directly "attached" to the (completed) 
space-time manifold. 

From a purely mathematical viewpoint, the key 
step in obtaining a conserved quantity is the con­
struction of a curl-free 2-form (on l<) using asymp­
totic fields: The integral of such a form on any 2-
sphere cross section of I< is automatically indepen­
dent of the cross section. Since Eab is trace and 
divergence free, the 2-form Eab~b€a mn is clearly 
curl free if ~b is a conformal Killing field on the 
hyperboloid. We have already used four conformal 
Killing fields to obtain the 4-momentum. There still 
remain the six Killing fields on A. 41 What are the 
corresponding conserved quantities? It turns out 
that they vanish identically: If ~a is a Killing field on 
A, the 2-form Eab.;aea mn is exact; using the expression 
for Eab in terms of its potential E, one can easily 
express this 2-form as a curl of a I-form. Thus, us­
ing Killing fields in place of JYf(k) in Eq. (23a) one 
does not obtain any nontrivial conserved quantities. 

Recall that the magnetic part Bab of the asymptotic 
graVitational field satisfies the same field equation 
as the electric part Eab• Hence, it would appear that, 
using Bab in place of Eab in Eqs. (23), one would ob­
tain another conserved quantity, the "magnetiC" 
analog of the 4-momentum, or, the "angular momen­
tum monopole-moment." From physical considera­
tions, one would hope that this quantity should vanish. 
This hope is indeed borne out: Since Bab ~dmits a 
(tensor) potential "Rab with Bab = - keamnDmK"b' the 2-
form BabDbf(k)eamn is exact and hence its integral on 
2- sphere cross sections vanishes identically. (From 
a mathematical viewpoint this result may seem sur­
prising since the algebraic symmetries and field 
equations for Eab and Bab are identical. Note, how­
ever, that the "symmetry" between Eao and Bab is 
broken via the introduction of potentials: Whereas 
Baa admits a tensor potential K ab, with emnaB a 

lD' A J E a '" 2; mKn b, ab does not. This difference can be 
traced back to Eg. (13) which relates the divergence 
of the Weyl tensor with the derivative of the Ricci 
tensor; the dual of the Weyl tensor is not related to 
the Ricci tensor in an analogous manner.) 

Finally, one might try to construct conserved 
quantities using Bab and Killing fields on 1\. However, 
they are all zero for the same reason that analogous 
quantities involving Eab are zero: Bab also admits a 
scalar potential B with Bab=DaDbB+Bhab lEq. (19)1. 

To summarize, a simple analysis of asymptotic 
fields yields only three nontrivial conserved quan-
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tities: The electric charge, the magnetic charge, 
and the total 4-momentum. The first two of these 
are scalars while the last one takes values either in 
the vector space dual to the space of translations 
or in the cotangent space at iO. 

B. Angular momentum 

To obtain a satisfactory definition of angular mo­
mentum, we must first overcome two apparently 
distinct obstac les. 

The first of these is related to the general notion 
of angular momentum itself. Recall that, in special 
relativity, the notion of angular momentum is closely 
related with the presence of Lorentz subgroups of 
the Poincare group: It arises as a linear mapping 
from the Lorentz Lie algebras to the reals. Since 
(the connected component of the identity of) the 
Poincare group admits a four-parameter family of 
Lorentz subgroups and since none of these subgroups 
is preferred over any other, angular momentum is 
forced to be "origin dependent;" the structure of the 
Lie algebra of the Poincare group then gives rise 
to the familiar transformation property under the 
action of translations. In the transition from the 
Minkowski space to asymptotically flat space-times, 
the Poincare group has been replaced by the infinite 
dimensional group~·. Consequently, the symmetry 
group now admits "as many" Lorentz subgroups as 
there are supertranslations, rather than just a four­
parameter family of them. If we were to consider a 
linear mapping from each of the corresponding 
Lorentz Lie algebras to the reals and obtain a con­
served quantity, this quantity would have very little 
resemblance to one's intuitive notion of angular 
momentum: It would be defined relative to an "ori­
gin" lying in an infinite dimensional space! Thus, 
to obtain a definition which respects one's intuition 
about angular momentum, one must first suitably 
restrict the supertranslation freedom: We must in­
troduce some additional structure at spatial infinity 
which can reduce the infinite dimensional group of 
asymptotic symmetries to the Poincare group. 

The second difficulty is that, as examples show, 42 

none of the asymptotic fields (and potentials) intro­
duced so far carries information about angular mo­
mentum. Intuitively, one might expect angular mo­
mentum to arise from 2-sphere integrals involving 
the "magnetiC" part of the asymptotic curvature. 
The field Bab is, however, quite unsuitable for this 
purpose: Both Eab and Bab contain information only 
about the "1/r 3 part" of the asymptotic curvature 
and while (from examples) one expects the 4-mo­
mentum to appear at this order-as it did-one does 
not expect the angular momentum to do so. (Indeed, 
as we saw, all the conserved quantities that one can 
easily construct from Bab vanish identically.) 
Therefore, before we can hope to define angular 
momentum, we need to introduce and analyze a new 
asymptotic field which can capture the "1/r 4 con­
tribution" to the (magnetic part of the) asymptotic 
curvature. 

It turns out that both these obstacles can be over-
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come at the same stroke. Impose, on the asymptotic 
behavior of the Weyl tensor, the following conditions, 

B (1))= limn 11 2 *c (vmn l / 2)(vn Ql/2)==0 (24a) 
ab ~io ambn ' 

and, that the "next order" contribution to the mag­
netic part be asymptotically well behaved, i. e. , 
that 

fi .==lim *C (vmQl/2)(~Ql/2) (24b) 
"ab' ,0 ambn 

~i 

be a regular direction-dependent tensor at iO. 
[Note that, tab is also the limit of the "radial" de­
rivative, (~Q 1/2)~p(rt1/2 *Cambn (vmn 1 12 )(Vnn 1/2) of the 
field whose limit by Eq. (24a) must vanish. We 
retain the "hat" on tab because, as we shall see, it 
fails to be conformally invariant.] It turns out that 
the vanishing of Bab introduces additional structure 
at infinity, thereby eliminating the "supertransla­
tion freedom, " while the existence of Pab leads to 
the expression for angular momentum. In effect, 
the additional conditions just demand that, in the 
physical space-time, the "magnetiC" part of the 
Weyl tensor should fall off one order faster than the 
"electric" part. These conditions are satisfied in 
Kerr space-times and, although no general result 
has been proven, there do exist heuristic arguments 
which suggests that they would be satisfied for a 
wide class of isolated systems. We now introduce 
the expression for total angular momentum (includ­
ing the contribution of the gravitational field) of iso­
lated systems whose asymptotic gravitational field 
satisfies this condition. 

It is convenient to proceed in two steps. First, 
we shall introduce angular momentum as a set of 
skew tensors at iO, with appropriate transformation 
properties, and then we shall present its more accu­
rate description in terms of the structure of Spi and 
of the group C; of asymptotic symmetries. 

We begin by eliminating the supertranslation 
freedom using condition (24a). Recall, first, that 
the supertranslation freedom is essentially the same 
as the conformal freedom in the unphysical metric: 
A rescaling by a function which is C>o at iO corre­
sponds to a supertranslation; while one by a function 
which is C1 at iO, to a translation. Hence, the elimin­
ation of supertranslations other than translations can 
be achieved Simply by first singling out, from the 
conformal class of aU metrics which are C>O at iO 
a preferred subclass of metrics whose relative c~n­
formal factor is Cl at iO, and then demanding that 
this subclass be left invariant by (restricted) asymp­
totic symmetries. The idea now is to use (24a) to 
select the required preferred subclass. Since Bab 

vanishes, it follows that its potential Kab satisfies 
DlaItbJc= O. Furthermore, ~b is symmetric. Hence 
(by a result quoted in Sec. 5), there exists a scalar 
fi~ld K on the hyperboloid/< such that Kab==DaDbK 
+ Khab • Hence, using the transformation property 
[Eq. (20)] of Itab under conformal rescalings it 
follows th,!lt one can always choose a conformal frame 
in which Kab = 0, and, that the conformal factor re­
lating any two such frames must be Cl at iO. Thus 
when Bab == 0, the condition :K..b == 0 selects out a pr~­
ferred subclass of conformally related metrics with 
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the desired property. Finally, it is clear from the 
above discussion that the only supertranslations 
which will leave this subclass invariant are 
trans lations. 

We are now ready to define angular momentum. 
Using the definition of iab(T)) , and the vanishing of 
Bab , one obtains, 

(YlPab (l)) = Q *Cambn(T))T)mKan(T)) , (25) 

where Kam(T)) = fpm(T)) - E(T))ham is the direction-depen­
dent field at iO which induces on the hyperboloid /<, 
the tensor potential Kam for Bam. Because we have 
restricled ourselves to conformal frames (gab'S) in 
which Kub= 0, we have, onl<, 

(26) 

where, as per our usual notation, iab is the tensor 
field on 1<., induced by {3ab(l)) at in. Hence, given any 
skew tensor F ab in the tangent space of iV, the right­
hand side of 

iflabF .=.1/' oobt € dsmn (27) ab' 2 s2P S b amn 

is independent of the 2-sphere cross section of/<, 
where ~ a is the (Killing) field induced on /< by the 
direction-dependent vector €abcdFcaT)b at iO. Hence 
Eq. (27) defines a skew tensor JfFb at iO. Under a 
conformal rescaling gab-~b=w2gab' where W is Cl 
at iO 0. e., under a rescaling which leaves our pre­
ferred subclass of conformal frames invariant), one 
has, on/<, 

i ab -f;b=iab +2€mk<aE\) Dmw. (28) 

That is, under restricted conformal transforma­
tions (which correspond to translations rather than 
arbitrary supertranslations) the magnetic part !fab 
of asymptotic curvature picks up an electric part. 
Finally, using Eqs. (27) and (28), it follows that, 

Mab_M,ab=Jwab +2pCaw bl, (29) 

where wa = (-$aw) I iO and where pa is the 4-momentum 
defined via Eq. (23). Since the natural isomorphism 
between the translation subgroup of the asymptotic 
symmetry group q and the tangent space at iO sends 
the translation corresponding to the conformal re­
scaling gab - ~b = W2gab to the vector wb at iO, (29) is 
the usual transformation law for angular momentum 
under translations. The 4-parameter family of skew 
tensors Jf?b at iO, obtained via Eq. (27) in conformal 
frames selected by the condition ~b= 0 represents 
the angular momentum of the isolated system under 
consideration. 

In terms of Spi, the situation may be summarized 
as follows. Given any metric gab in the conformal 
class available, one can coordinatize the fibres of 
Spi in a canonical way using the tangential component 
a of the acceleration of curves (representing points of 
Spi), at iO. Fix a real number r and denote by 
Cr(gab) the cross section of Spi defined by a = r. 
[Thus, Cr is a mapping from the conformal class of 
metrics (C>o at iO) on to the space of smooth cross 
sections of Spi.] Consider the subclass of metrics 
gab for which Koo = O. It is easy to check that the 
image, under the mapping Cr of this subclass is a 
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4-parameter family fr of cross sections which is 
left invariant by translations, but by no other super­
translations. In view of the remark made at the end 
of Sec. 4, it follows that, when this family is in­
cluded in the universal structure on Spi, the asymp­
totic symmetry grout? reduces to the Poincare group. 
Thus, the condition Kab == 0 enables us to select a 
preferred Poincare subgroup of(). Finally, note that 
this Poincare subgroup is independent of the initial 
choice of the real number r: Since the structure group 
of Spi is in the center of 0, the action on Spi of the 
Poincare subgroup selected above leaves invariant 
the family fr of preferred cross sections for each 
real number r. 

How much "freedom" do we have in the selection 
of a preferred Poincare subgroup of q? The only 
additional structure that we have had to introduce is 
the condition Knb= O. Note, however, that some such 
condition is essential to obtain a meaningful expres­
sion of angular momentum: It follows from Eq. (25) 
that, in a general conformal frame, t3ab would fail to 
be divergence free; hence, the resulting expression 
for angular momentum would fail to be independent 
of the 2-sphere cross section used in its definition. 
What is the most general condition that can be im­
posed on Kab to ensure that Pab is divergence-free? 
U sing the assumption Bab = 0, it is easy to see that 
we must require Knb to be "pure trace, " i. e., to be 
proportional to the metric hob on k. Finally, the 
proportionality factor can be determined by demand­
ing that the procedure should single out the "correct" 
Poincare subgroup of C; in the case of Minkowski 
space-time; the factor turns out to be zero. It is 
in this sense that the condition-and hence the re­
sulting Poincare subgroup of C; -is canonical. 

How is the definition of angular momentum related 
to this Poincare group? Note, first, that, given a 
metric gab in the preferred subclass, one obtains 
[using the i-parameter family CrWab) of cross sec­
tionsl, a natural lifting of the Lorentz group on the 
hyperboloid l<. to a Lorentz subgroup of the Poincare 
group on Spi. Hence, the angular momentum-de­
fined by Eq. (27)-may be regarded, more naturally, 
as a mapping from the vector spaces of Lorentz 
Lie algebras of this Poincare group to the reals. 

It is curious to note that, for each real number r, 
the set of cross sections contained in the family fr 
can be given, naturally, the structure of Minkowski 
space. Furthermore (the i-parameter family of) 
these Minkowski spaces are naturally isomorphic 
to each other; the structure group of Spi provides 
these isomorphisms. Hence, we may identify them 
and call the resulting space the asymptotic 
Minkowski space. Since the action of the Poincare 
group on Spi leaves each family fr invariant, it can 
be extended to the asymptotic Minkowski space; as 
might be expected, this action just coincides with 
that of the natural isometry group of the asymptotic 
Minkowski space. Finally, conserved quantities can 
be expressed as tensor fields on this Minkowski 
space: The total 4-momentum is represented by a 
constant vector field, and, the angular momentum, 
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by a second rank, skew tensor field with the usual 
transformation property under the change of origin. 

This concludes the discussion on angular momen­
tum. Note, finally, that since Pab is symmetric, 
trace-free, and divergence-free, one might imagine 
constructing another conserved quantity, 
J 2$ab(Dbf(k)€amndsmn from tab using the conformal 
~illing fields Daf(k) on I< . This quantity vanishes 
identically; it is not hard to show that Pab ... admits 
a tensor potential iab with Pab = - !€amnDm"nb, so that 
one can repeat the argument used to show that the 
"magnetic" analog of the 4-momentum vanishes. 

7. DISCUSSION 

In the preceding sections, we have presented a 
new description of the asymptotic structure of the 
gravitational field at spatial infinity. In the final 
picture, this description has turned out to be similar 
to that of null infinity in many ways. Thus, the 
universal structure of Spi is very analogous to that 
of!): The asymptotic symmetry groups in the two 
regimes have the same broad features, the links be­
tween conserved quantities and asymptotic sym­
metries are parallel, and, in both cases, conserved 
quantities emerge as integrals of asymptotic fields 
over 2- sphere cross sections of the structure at 
infinity. 

However, there do exist at least two important 
differences, both of which make the spatial descrip­
tion seem somewhat less "natural" than the null. 

The first of these is that whereas in the null 
regime differentiability requirements on the 
completed manifold and the rescaled metric are 
simple,43 in the spatial regime they have turned out 
to be quite awkward. Could we have, somehow, 
avoided these complications? Let us begin by analyz­
ing, in intuitive terms, why these complications 
arose. An elementary calculation4,16 shows that, in 
the case of the Schwarz schild space-time, the con­
formal curvature of the rescaled metric must diverge 
at iO. Since any reasonable definition of asymptotic 
flatness must admit this space-time as an example, 
one is severely constrained in one's choice of differ­
entiability requirements: The strongest condition 
that one can impose is that the metric be C1 at iO• 

If we had actually imposed this condition, our analy­
sis would have been conSiderably simpler; in this 
case, the resulting description of spatial infinity 
would have inherited a much richer structure. For 
example, lI'ithout any extra assumptions on the be­
haviorof the asymptotic curvature, the Poincare 
group would then have emerged as the asymptotic 
symmetry group. However, as remarked in Sec. 
2, it turns out20 that C1-differentiability also im­
plies the vanishing of the total (ADM) 4-momentum. 
(Intuitively, in this case the physical metric 
approaches the flat metric "as 1/r 2" rather than 
"as l/r" at spatial infinity.) Hence the C1-differen­
tiability is simply too strong. What would have 
been the result if we had required the metric to be 
only CO at iO? The situation would have been just the 
opposite: One would have obtained too little structure 
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to make useful constructions. For example, since 
the analysis of the "second-order" structure at iO 
requires the use of a (possibly direction-dependent) 
connection, with a CO metric one could have ex­
amined only the "first-order" structure. Conse­
quently, the "blown-up" structure would have been 
just the hyperboloid 1<, and the asymptotic symmetry 
group, just the Lorentz group; one would have lost 
all supertranslations. The situation would have been 
even worse in the analysis of physical fields. For 
if gab were only CO at i O, S,1/2Cabca need not have 
admitted a direction-dependent limits there. Con­
sequently physically interesting asymptotic fields 
could not have even been introduced in the gravita­
tional case. Thus, if one wishes to introduce iO at 
all, one is forced to accept the awkward differen­
tiability condition on the rescaled metric gab' 

The second difference is that whereas in the null 
regime!) provides, simultaneously, a boundary 
for the space-time manifold, an arena for asymptot­
ic symmetries and a home for asymptotic fields, 
in the spatial regime, in a sense, the three roles 
have become disjoint, being played, respectively, 
by iO, Spi, and the hyperboloid K. Could we have 
introduced just one structure instead of all three? 
One can, in fact, imagine44 an alternate approach in 
which one introduces neither iO nor Spi but only a 
time like 3-manifold analogous to I< which serves 
as the "spatial boundary" of the space-time in the 
same way as!) serves as the "null boundary. " 
Such an approach has several advantages: One can 
discuss spatial infinity by itself without any refer­
ence to!), and one can deal, throughout, with 
smooth manifolds and smooth tensor fields. Note, 
however, that there are many advantages in having 
both iO and Spi at one's disposal. Thus, for example, 
as we shall see in the next paper, the presence of 
iO is crucial in relating the asymptotic structure at 
spatial infinity with that at null. Next, the tangent 
space at iO provides a natural common home for 
various conserved quantities making it easy to relate 
them. Isometries in the physical space-time can 
also be most conveniently analyzed and classified 
by examining their behavior near i O• 20 Furthermore, 
the tangent space at iO also provides a natural arena 
for investigating the relation between these iso­
metries and the corresponding conserved quantities. 
For example, one expects that, in stationary 
space-times, the "asymptotic rest frame" defined 
by the Killing field should coincide with that defined 
by the total (ADM) 4-momentum. \Vhile it seems 
rather difficult to obtain an unambiguous formulation 
of this conjecture in the absence of iO, it is easy to 
obtain not only a formulation but also a proof using 
the tangent space at iO. Similarly, the structure 
made available by Spi is useful in several ways. For 
example, it seems difficult to obtain a "local" char­
acterization of the asymptotic symmetry group in 
the absence of Spi: If one has available only the hyper­
boloid I< -or, a suitable analog thereof-one must 
apparently introduce asymptotic symmetries as 
diffeomorphisms in the space-time manifold which 
preserve asymptotic conditions. While such a de-
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scription of asymptotic symmetries may seem satis­
factory mathematically, it is rather awkward from 
an aesthetic viewpoint; the main reason behind the 
introduction of boundaries is that one wishes to ana­
lyze the asymptotic structure of space-times using 
local differential geometry at their boundaries. 
Finally, it is the structure made available by Spi 
that enables one to introduce such notions as that 
of the "asymptotic Minkowski space at spatial in­
finity." The existence of these notions provides, 
in turn, mathematical tools to obtain precise formu­
lations-as well as proofs-of intuitive conjectures 
concerning isolated systems. Thus, in absence of 
either i O or Spi, our analysis of the asymptotic 
structure of space-time would have been seriously 
hampered. 
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APPENDIX A: MATHEMATICAL PRELIMINARIES 

In this Appendix, the differentiability conditions 
and conditions on tensor fields at iO are discussed. 

We begin Aby defining direction-dependent tensors 
at iO. Let (M, gab) be given as a C1 manifold with CO 
metric Kab' where g'ab is C3 on the image of M in M. 
Let r be the family of C1 space like curves in M, 
C3 on the image of M, passing through iO; and let 
'YF r have unit tangent vector 1)a at iO. A C3 tensor 
field YU"'b c"'a on the image of l'vI is said to have a 
r('gular direction-d('pendent limit at i O if: 

(i) The limit of ra··· b
c ... a along y at iO exists for 

all y(:C r, and depends only on 1)a. We write 
lim~ioTa"'bc ... a= T""bc ••• a(1) for this limit. 

(iO The derivatives of all orders of T""bc ... a(l) 
with respect to 1)a exist; and if 0eT"···bc ••• a(1j) denotes 
the derivative of T""bc ••• a(l) with respect to 1)e, then 

Be ~"'b c"'a(1) 

= limQ1/2'{7 eTa"' b c ••• a 
~iO 

holds, where ~ is the derivative operator associated 

with i;'ab' 
The role of condition (i) is clear: A tensor field 

r··· b
c ... a for which lim~ior···bc ••• a exists defines a 

mapping from the unit hyperboloid I< of spacelike 
vectors at iO to tensors at iO having the same index 
structure as Ta"'bc"' a' Condition (ii) ensures that 
T""'b (1]) is a smooth mapping, and that the derivative 
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of r···bc ... a(T) is given by the limiting formula 
which holds for direction-dependent tensors at i O 

in Minkowski space-time. (The derivative operator 
Ba is defined by: 

,~aBa TII1"··np ••• 
q

(T) 

=lim.!['P"···np (T)+E"k)-Tm"' n (T)] 
e-O f ••• q p ... q 

for any vector field k a on [/ and naa Tm"'np = 0 ) f\ , '/ a ••• q. 

If T""'bc ... a(T) is orthogonal to 1)a (on all its 
indices), it defines, naturally, a tensor field on/< 
which we shall denote by ~'''bc ••• a. However, 
oe ra"' b c ••• a(T) will not, in general, be orthogonal 
to 1)a (on indices other than e) even if ra···bc ... a(T) is. 
It is therefore useful to introduce a derivative opera­
tor Da which acts on direction-dependent tensors at 
i O and which preserves orthogonality to 1)a. 

The metric g'ab has a limit at i O, lim~iogab=gab' 
which is direction independent (since gab is C>O): 
0agbc(T) = O. The direction-dependent tensor 11ab(T) 

= gab(T) - T)aT)b is orthogonal to T)a, and so defines a 
tenz,or field hab on 1<. This hab is the natural metric 
onf\. For ra···bc ... a(T) orthogonal to l)a, DeT'···bc ... a 
is defined by 

Dera··· b
c .. • a(1) 

Clearly, De~"'bc'''d(T) is orthogonal to 1), and so 
corresponds to a tensor field DeT'···bc ••• a on/<. 
Furthermore, it is easily verified that Da defines a 
derivative operator on f<. In fact, this derivative 
operator is the covariant derivative associated with 
hab; for since 0agbc(T) = 0, 0a1Jb= hab (l) hold, we have 
Dahbc= O. 

\Ve now define the C>l differentiable structure at 
i O• Let (V, cp) and (V, <j;) be charts containing i O in 
the C1 atlas of M, such that the restrictions of cp and 
~I to the image of Mare C4 maps. The chart (V, if) is 
said to be C>l compatible with ( V, rjJ) at i O if 
(&2(J i ocp-l)/&x

j
&x

k
) ocp and (&2(CPi oI/J-l)/&x j &x k ) oI/J have 

direction-dependent limits at i O for all j, k, and i, 
where rjJ i and IjJ i are the ith component maps of ¢ 
and <I). The family of all charts C>l compatible with 
(V, ¢) at iO is the C>l differentiable structure on M 
at i O compatible with (V, 0). 

A C3 tensor field ra·" b
c ... a on the image of M is 

said to be C>O at i O with respect to a C>l differentiable 
structure at i O if the first derivatives of its compo­
nents in a chart (and thus in all charts) belonging to 
the C>l differentiable structure have regular direc­
tion-dependent limits at iO. More generally, a 
tensor field whose components have vanishing deriva­
tives up to order k - 1 at i O, whose kth derivatives 
are direction-independent at i O, and whose (k + llth 
derivatives have direction-dependent limits at i O

, 

is said to be of class C>k at iO. 
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The condition that gab be C>o at i O with respect to 
a differentiable structure determines the differenti­
able structure uniquely; for if the first derivatives 
of the components of gab in two charts containing i O 

have direction-dependent limits at i O, the two charts 
must be C>l compatible with each other. 20 The C>l 
differentiable structure with respect to which the 
metric gab is C>o is called the C>l differentiable 
structure on ~ at i O• 

Finally, note that, from the requirement that 
ga!l. be C>o at to, it follows that lim~iOrll/2Rabed 
= R abed(7) defines a direction-dependent tensor at 
i O• Since the first derivatives of the components of 
gab have regular direction-dependent limits at i O, 

so do the components of its connection. Condition 
(H) of the definition of a regular direction-dependent 
tensor, and the definition of the curvature tensor in 
terms of the connection then imply the existence of 
Rabed(l). 

APPENDIX B: ASYMPTOTICALLY FLAT 
INITIAL DATA SETS IN AEFANSI SPACE-TIMES 

Fix an AEF ANSI space-time (M, gab) and denote 
by (l\~f g~b) any of its AEFANSI completions. For 
simplicity, in this appendix we shall not explicitly 
distinguish between M and its image ~I(M) under the 
imbedding map I}!. Thus, we allow ourselves to 
write "gab = Q2 gab on M" rather than "0 * (g'ab) 
= 4'* (Q2)gab on M." 

\Ve begin by showing that there do exist initial 
data sets in (M, gab) which satisfy the ADM-G 8 

conditions: 

Theorem: Let t be any three-dimensional, space­
like submanifold of (1\1:, gab) such that iO E. T, Tis 
C>l at i O and C3 elsewhere. Then the initial data in­
duced on T= t- i O by gab is asymptotically flat in 
the ADM-G sense. 

Sketch of tile proof: Identify i O with the point 1\ 
in the ADM-G framework (see Sec. 2), and use the 
pullback Qf of Q to T as the ADM-G conformal 
factor. Denote by qab the metric induced on T by 
gab and by qab, the metric induced on T by gab' Then, 

T A ,,2 S' A. C>O t'O d' ~ on ,qab=.Giqab' Inc~ gab IS a z, an SInce l' 

is C>l, it follows that qab must be CO at iO. Next, 
consider the conformal factor Qi. Because Q is C2 
at iO with Q I iO=O, ~aQ.J iO=O, and (~aVb~2 -2g~b) I iO 

= 0, it follows that o~ T, ~2i is also C:.. al iO and 
satisfies Qi I iO= 0, DaQi I iO= 0, and WaDbQi 
- 2qab) I iO= 0, where Da is the natural derivative 
operat2rA on (T, q~b)' Next, we must show that 
Q-1I2 WaDbQi - 2qab) admits a direction-dependent 
limit at iO. Recall first (from Appendix A) that, 
since gab is C>D, it~ Riem~nn tensor Rabed has theA 
property that, in M, Q1/2Rabed-and hence, Q1I2R ab-
admits a regular direction-dependent limit at iO. 
Using the fact that the Ricci tensor Rab of gab van­
ishes in a neighborhood of iO and the consequent ex­
pression for Rab in terms of Q and its derivatives, 
it now follows that Wl/2(~a~b~t - 2gab ) admits a regu­
lar direction-dependent limit at fO. Finally, project­
ing the tensor field Wl/2(VaVbQ - 2gab ) into (T, qab) 
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and using the fact that, since T is C>O at iO, the ex­
trinsic curvature Pab of T in (iW, gab) admits a regular 
direction-dependent limit, it follows that so does 
Q~1/2 (n/JbQf - 2Qab)' 

ConSider, next, the conditions on the extrinsic 
curvature Pab of T in (M, gab)' and on the intrinsic 
curvature Aab of (T, (jab)' It is easy to check that Pab 
is related tOPab viaPab=rtPab+n-l(~mVmn)qab' where 
~ is the g unit normal to T. Using various conditions 
on the conformal factor ~I, it is straightforward to 
check that rt~l(flmv mrt) admits a regular direction­
dependent limit at i O• Hence it follows that Pab satis­
fies the ADM-G condition. ConSider, finally the 
Ricci tensor ({ab of qab' Since rt1/2Rabcd admits a regu­
lar direction-dependent limit at i O, so does 
rt 1/ 2Eab' where Eab= {;ambn~m.nn is the electric part of 
the Weyl-curvature relative to T. Furthermore, by 
the Gauss-Codazzi equations, one has Aab== Eab 

A'" A A A 1/2 A 

+ PamPmb - pm mPab' Hence, on T, Qf K ab admits a 
regu lar direction-dependent limit at i O• 

Thus, the initial data (%b' Pab) induced on T by 
gab does indeed satisfy all the ADM-G conditions. 

Next, we wish to introduce the notion of initial 
data sets "boosted" and "time translated" relative 
to each other. Two asymptotically flat data sets 
(T, qab' Pab) and (T, q:W, P~b) in (M, gab) will be said to 
be boosted relative to each other, if, in the comple­
tion 1\1, T= T U i O and T' == T' U i O fail to be tangential 
to each other. Thus, if two data sets are relatively 
boosted, they differ already "in the first order" 
at iO. (T, qab'Pab) and (T, q~b,P~b) will be said to be 
"time translated" w. r. t. each other if, in the com­
pletion, T and fu are tangential, and if the limiting 
extrinsic curvatures Pab and P~b fail to agree at iO; 
data sets which are relatively time-translated agree 
"to fir~t order" at i O but not "to second-order." If 
t and T' are tangential, and if further limits of 
Pab an~ P~b agree, then it is easy to show that limits 
of Q~/2R ab and Q¥2R~b also agree. Hence, in this 
case, the two data sets will be said to be asymptoti­
cally indistinguishable. 

Fix an asymptotically flat initial data set 
(T', q~b,P~b). "How many" asymptotically distinct, 
asymptotically flat data sets can one obtain via time 
translations from (T', q~b",P~b)? Let (T, qab,Pab) be 
one such data set. Then T' and t are tangential at 
i O

, qab and q~b agree at i O while Pab and P~b have 
distinct limits. Therefore, the collection of data 
sets under consideration can be "labeled" by the 
limiting direction-dependent values of their extrinsic 
curvature. Note, however, that this limiting value is 
constrained: The Gauss-Codazzi equations imply 
that DlaPb1e=qamqbnq/RmnrsnS on T, so that by multiply-
ing Aby ~¥ A a~~ t~k~g limits one obtaJns A 
~laPblc(7)) = q~. qbnq/R mnrs(7)n" , where Pab(7), qab' 
Rabcd(7) and nS are the (direction-dependent) limits of 
·0 f A A RA AS h 

Z 0 Pab' qab' abed' and nand were (Sa is the deriva-
tive w. r. t. the 2-sphere of directions "7)" in the 
tangent space of T at i o• How many solutions Pab 
does the last equation admit? Note that, for any 
data set (T, qab'Pab) which is time translated relative 
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to the given one, (1", q~k,P~b)' we have 
;; m;:: nn ~ ()n"S-q'" m 'n"'TR" ()" 
'2/l" "ib""'C "mnTs ~ - a qb % "'JJTS 1) n"'. Hence, 
.6.Pab(1)) == Pab - P~b satisfies (Sla.6.Pb Ic(1)) == o. Thus, 
there are as many solutions to the contraint equa­
tion on Pab, as there are to 5Ia.6.Pblc(1))== O. Fortunately, 
one can write down the general solution to this last 
equation 

.6.Pab(1)) = ('5J5b X(7)) +~1)J5bX(1J) + 1)zj5aX(1)) + X (1))q' ab' (Bl) 

where X(1)) is an arbitrary (smooth) function on the 
2-sphere of directions 1). Thus, there are as many 
solutions to the constraint equation as there are 
functions on a 2-sphere. Hence, we conclude that one 
can obtain as many asymptotically flat initial data 
sets via time translations of (T', q~b,P~b) as there 
are function on a 2-sphere. All these data sets agree 
with one another to the "first order" but not to the 
"second." 

Finally, it is obvious from the above discussion 
that, restrictions to M of diffeomorphisms in M which 
leave (!) and) iO invariant and which are C>l at iO 
provide us with "asymptotically regular" evolusions 
in (M,gab)' evolutions which preserve the ADM-G 
asymptotic conditions. 

APPENDIX C: SOME AEFANSI SPACE-TIMES 

Explicit constructions of the conformal comple­
tions for the Minkowski and Kerr geometries are 
given in this appendix, along with a discussion of 
the radiative perturbations of the Schwarz schild 
geometry. A general form for the space-time 
metric satisfying the "local conditions at iO" re­
quired by the definition of AEFANSI space-times is 
also given. 

The metric of Minkowski space in spherical 
coordinates is 

ds2 = - dt2 + dr2 + r2(d(J2 + sin2(J d(2). 

Let v and w be given by 

(Cl) 

v=r+t, w==r-t. (C2) 

In terms of these coordinates, the metric is 

ds2 == dv dw + t(v + w)2(d(J2 + sin2(J d(2). (C3) 

Set v = I/V, lV = l/w, and n =v~; the conformally 
rescaled metric is 

d~=n2ds2 

(C4) 

Comparison of (C4) with (C3) shows that the re­
scaled metric is flat (in fact, this rescaling of the 
Minkowski metric is induced by the action of the 
inversion about the origin in the flat-space conform­
al group). Thus, the introduction of coordinates 
(t, x, y, z) given by 

t=-~(V-~), (C5a) 

(C5b) 

y =~(v + w) sine cos¢, (C5c) 
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(C5d) 

leads to a metric which can be extended over all of 
m4. This extended manifold is a neighborhood of iO 
in M. The surface t = (x2 + y2 + z2)1/2 forms that por­
tion of9+ to the past of U' == 0; t = - (x2 + y2 + z2)112 is 
the part of !)- to the future of v == O. The point t =.~ 
= y = z = 0 is, of course, iO. The conditions on the 
metric "and conformal factor are trivially satisfied; 
in fact .Ka~ is everywhere analytic and ~t satisfies 
f) a 'Vb~l = 2gab everywhere. 

We now consider a more interesting example: The 
Kerr solution. In Boyer-Linquist coordinates, the 
metric45 is given by 

Set 

ds2 = _ (1 _ 2Mr ) dt2 
r2 + a 2 cos(J 

(
y2 2 2Ma2r sin2(J) . 2(J d 2 

+ +a + 1"'2 +a2 cos2(J sm ¢. 

r* =f(r) 

= r+ M /(ivf2 - a2)1/2 tVl + (1v!2 - a2) 1 /2 

X In ('V! + (Aft _a2)112 -1) 

(C6) 

- [iv!- (Jlf2 - a2)1/ 211n (M _ (M2 ~ a2)1!2 - 1)] 
(C7) 

and introduce coordinates v and w given46 by 

1'* == 1. [f(~) + f (J)] , 
2 v Ii' 

t=%~(~) -f(~)] . 
Define r= l/r, and let n be given by 

[l=VW [1-2Nl
vg (1+ In v;)] . 

Then the conformally rescaled metric is 

iS2= [22 ds2 

[ 
v"W- ( ? )] 2 = I-2M-=- l+ln~ 

r VU' 

( 
2Mr 2Mr)1 dAd" x 1- - v w 

1+a2r2 1+a2r 2 cos2e 
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+V2 1-( 2M{;,x )-1( 2]'vlarsin
2e ) dwddJ 

1 +a2w2 1 +a2r2 cos2e ' 
V2;'2 

+ ~ (1 + a2y.2 cos2e) de 2 
r 

£;2 U;2 (1 2".2 21'.,fa
2
yJ sin2e) . 2e d,f,2} (C9) + -~~ + a ., + 1 2-2 2e SIn '+' • r +a rCos , 

Now let (£x,y,;) be given in terms of (v,tV,e,rp) 
by (C5), as in Minkowski space, and extend the Kerr 
manifold to all values of these coordinates. The re­
sulting manifold again forms a neighborhood of in; 
y+ and y- are the same coordinate surfaces as in 
Minkowski space. However, the metric gab is only 
CO on y and C>o at iO. The conformal factor rt 
satisfies the required conditions on () and at ie, 

J( 

and the direction-dependent tensor K ab (1)) -the tensor 
potential for Bab(1J)-vanishes for this choice of con­
formal factor. 

The remaining quantity of interest is the Weyl 
tensor. It is convenient to introduce a null tetrad 
(la, rna, ma, n a), where in Boyer-Lindquist coordinates 
the tetrad vectors have components 

1 (y2 - 2Mr+a2 ) 1/2 la - - ':'-.;---=;;F---';~ -'['2 y2 +a2 cos2e 

(1'2 !2;:;+a2 ' 1, 0, - 1'2 - 2~r+a2)' (C10a) 

a_ -L 1 (.. e 0 i) 
m -.f2 (:y2 +a2 cos28)172 - Ul sm , ,1, sine ' 

(C10b) 

( 
y2 +a

2 
1 0 a) 

x :y2 _ 2Mr+a2 , - , , - :y2 _ 2Mr+a2 • (C10c) 

In terms of this tetrad, the Weyl tensor for the Kerr 
solution can be written in the form 

To study the asymptotic behavior;.. of...th~ We~l ten­
sor at in, we introduce the tetrad (l/Ja' pa, rna, ma), 
given by 

(C12a) 

(C12b) 

rna = Oma. (C 12c) 

The tetrad vectors $a, pa,/Jla, and #ia have direction­
dependent limits at ie, and lim ~ i O pa = 1Ja. From the 
orthogonality relations for the tetrad, it is clear that 
the direction-dependent vectors defined at iO by ~, 
/n a, and {fla correspond to a triad (!JIa,ma,m a) on/<. 
In terms of the tetrad (~a, (:p, l'na, #tal, the conformally 
rescaled Weyl tensor can be written 

= _ 2 (2) ( 111 ) 
f)2zv 2 (1-iarcosB)3 

[ 1 2]1,lvw (1 I r )J -2 X - -_- + n A"A""" 
r vw 

x [(0(a - P[ah;lb1($[C + P[C)~dl 

- (2~[aPb 1+ ';1 [a~bl) (2~[cPdl + 1fz[C~dl) 

+ (~[a + P[a}i~bl($[C - p[c) l;l d1 l. (C13) 

To evaluate the mass and angular momentum, we 
need only obtain expressions for Eab and Pab on a 
fixed cross section of K. For convenience, we 
choose the intersection ~ of I< with the tangent plane 
at iO to tpe hypersurface v = tV. On this cross section, 
Eab and (1ab take the form 

Eab=M(l/Jal/Jb+m(amb»)' (Cl4a) 

(Cl4b) 

[Note that, since Kab vanishes (in this conformal 
frame), Bab = 0.1 

The mass is obtained by integrating Eab over the 
cross section ~, using I/Ja as the integrating factor 
(on ~, !JIa clearly represents the 4-velocity of the 
natural asymptotic rest frame of the system): 

Po= Ir; I/JmM(1/J m!JIn +immmn+!mmmn) dSn 

= - 471' (sine de drp 
Mf2!T !T 

o J ° 
=-M. (C15) 

The only interesting component of the angular mo­
mentum is that about the symmetry axis. The corre­
sponding tensor Fab has as its projection onto I< 

fab=icosO m(ambl; 

thus the component of the angular momentum about 
(C 11) the symmetry axis is 
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1 f 2". 1T = 41T f 3Ma cos2e sine de d¢ 

° 0 
=Ma. 

We next examine the effects at i O of the linearized 
radiation fields in the Schwarzschild background 
constructed by Burdeen and Press. 47 They begin 
with the Schwarzschild metric in coordinates 
(u, r, e, ¢) such that the metric takes the form 

2 ( 2J'v[) 2 ds = - 1 - r du - 2du dr 

(CI7) 

The perturbations they consider are expressed in 
terms of an arbitrary complex-valued function 
A (u, (). ¢) which is assumed to have a convergent 
expansion in spherical harmonics, 

(CIS) 

The perturbed Weyl tensor constructed from this 
function is shown to lead a regular geometry on 

!)+ if the first (l + 2) derivatives of A Im(u) are every­
where bounded and if 

(
')1 (l- 2) !\ 2 fU IA(Z+1)(u) 12 du «M 
- (2l) ! ) 1m ° 0 

_00 

(CI9) 

holds for all finite u, where the superscript pa­
rentheses denote differentiation with respect to uo. 
However, the peeling behavior4 of the Weyl tensor on 
!)- is guaranteed only if, in addition, 

lim 
u __ ooAoo(U) , (C20a) 

limA 1m (u). (C20b) 

(C20c) 

(C20d) 

(C20e) 

all exist. 

A similar analysis shows that conditions (C20) im­
ply t~e existence of a direction-dependent limit for 
Ql/2Cabcd at iO (in fact, somewhat weaker conditions 
suffice). The existence of the direction-dependent 
tensor $ab also follows from (C20) if limu~_ocu[Aoo(u) 
- Aoo(u) 1 exists, where the bar denotes complex con­
jugation. This last condition appears Simply to pre­
clude nonzero angular momentum monopoles at 
spatial infinity. and is to be expected if the per­
turbed metric coefficients are to be nonsingulay48 on 
!). Thus. the appropriate behavior of the perturbed 
Weyl tensor components at i O follows from regularity 
requirements on!)+ and!)-. It is remarkable that 
conditions (C20) for regularity onJ- should imply the 
necessary conditions at iO. 
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We conclude by giving a general form of the metric 
satisfying the "local" conditions at iO [i. e., condi­
tion (iii) J in the definition of AEF ANSI space-times. 
The form is 

(
V +w ) w V ds 2 = 1+--(l! dvdw+-{3dv2 +-ydw2 
vw ~ w2 

v+w" A V+W A + -- U Adz dv + -- E dz dw v W A 

+ 4(V+W) q + --¢ dz dzB 1 2( v+W ) A 
AB vw AB , (C21) 

where qAB dzAdzB is a 2-sphere metric (upper case 
Latin indices take the values 2 and 3). The metric 
coefficients (l! , {3, y, <5 A' E A, and ¢ AB are smooth 
functions of v, w, and zA, continuous (and bounded) 
as v ~ 00 or w - 00, and smooth functions of v / wand 
zA in the limit v - 00, W - 00 with v / W finite and 
nonzero. 

By the introduction of new coordinates;; == 1/ v, 
W=I/w, and a conformal factor Q=vw, a metric is 
obtained which is CO as v - 0 or w - 0, and which, 
in coordinates (t, x, y, z) related to (v, w, Z A) by the 

>0 A "" "" A analogofEqs. (C5), is C att==x=y=z=O. The 
conformal factor Q vanishes where v == 0 or W = 0, and 

A. A '" A 2 ..... 
at t=x=y=z=O it is C> and satisfies 0=0, 'V.O=O, 
.g a "$ b n = 2gab • Thus, the coordinates (x. y, Z. t) may 
be extended to form a neighborhood of i O in the ob­
vious way. 

Note, however, that there do exist additional 
conditions that the metric (C21) must satisfy before 
the space-time can qualify as AEF ANSI: No field 
equations have yet been imposed on the metric. 
Thus, for the metric under consideration, there 
may exist no p0tentials (formed from the Ricci 
tensor Ra/J) for asymptotic fields Eab and ~ab' Fur­
thermore, Bab need not vanish and hence f3 ab need 
not exist. Finally, it is by no means clear that the 
metric (C21) is weakly asymptotic simple. The ex­
ample of the Kerr solution shows that even if the re­
scaled metric can be made regular on!) by a coor­
dinate transformation, this transformation will in 
general be only CO at iO. 49 However, it seems un­
likely that the imposition of field equations, at least 
to the required asymptotic order, will seriously 
restrict the functional freedom in (C21); and regu­
larity ony appears to play no essential role at iO. 
In any case, it is known4 that there eXists a large 
class of weakly asymptotically simple space-times. 

From the fact that the metric given in (C21) ap­
proaches a Minkowskian metric about as slowly as 
one would expect (it may be though of as Minkowski 
metric with correction terms of order "1/1"') it 
seems reasonable to expect that any metric which is, 
intuitively, asymptotically flat at spatial infinity will 
satisfy at least the local conditions at iO to be 
AEFANSI. 
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A new technique is introduced to investigate the structure of isometry Lie algebras. Some general results 
are first proved by applying this technique to n -dimensional manifolds equipped with metrics of arbitrary 
signature. A restriction is then made to 3-manifolds representing the space of orbits of the timelike 
Killing field in stationary space-times. Under the assumption of asymptotic flatness at spatial infinity, a 
complete description of isometry Lie algebras of these 3-manifolds is obtained. As corollaries, several 
results about symmetries of stationary isolated systems in general relativity are proved. 

1. INTRODUCTION 

The purpose of this note is to introduce a new 
technique for analyzing the structure of Killing fields 
on metric manifolds, a technique which appears to be 
useful especially in the investigation of symmetries 
of isolated systems in general relativitY. 

In Sec. 2, we consider general n-dimensional 
manifolds equipped with (nondegenerate) metrics of 
arbitrary signature. With each point p of the manifold, 
we associate two algebras, Ip and CPt of dimensions 
n(n+1)/2 and (n+2)(n+1)/2, respectively, with the 
property that there exists a natural imbedding of the 
isometry Lie algebra of the given metric manifold 
into (or, onto) I p , and of the conformal isometry Lie 
algebra into (or, onto) Cp • These two algebras turn out 
to be powerful tools in the investigation of properties 
of Killing and conformal Killmg fields. To illustrate 
their use, some general statements about isometries 
of n-manifolds are proved with their aid. While some 
of these results are well known, most, as far as we 
are aware, are new. 

In Sec. 3, these tools are used to investigate 
symmetries of stationary isolated systems in general 
relativity. For this, a restriction is made to 3-mani­
folds representing the space of orbits of the time like 
Killing field in stationary space-times which are asymp­
totically flat at spatial infinity. A complete description 
of isometry Lie algebras of these 3-spaces is 
obtained using the following technique: The algebra 
C A associated with the point A "at spatial infinity" 
is constructed and properties of Killing fields on 
the given 3-spaces are deduced by examining the 
imbedding mapping from the Lie algebra of Killing 
fields into CA' Using this description, several 
results concerning isometries of the given stationary 
space-times are established. 

2. MATHEMATICAL PRELIMINARIES 

A. Killing data and the algebra Ip 
Fix an n-dimensional, connected, C~ manifold 
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(without boundary) M equipped with a C~ metric gab' 
Let ta denote a Killing field on (M, gab)' Then, since l 

V;'i1 btc=Rcb/td where V and RObed denote respectively 
the derivative operator and the Rieman tensor on 
(M, gab)' it follows that the pair {ta, tab: =Vatb)p of 
tensors at any given point p of M characterizes the 
Killing field t a completely: if ta I p = 0 and tab I P = 0, 
then the Killing field t a must vanish everywhere on 
M. We shall refer to the pair (ta , tab)p as Killing 
data of ta at p. 

Let us suppose, for a moment, that (M, gab) admits 
two Killing fields t a and 7]a. Denote the corresponding 
data at p by (ta, tab)p and (7] a , 7]ab)p' Then, the commu­
tator [t, 7] Ja of the two Killing fields is again a Killing 
field and its Killing data at p is given by the pair 
(t"'rj",a_7] mt .. a, ta"'rjmb-7]amt"'b-RmnabSm7]")p, where 
indices are raised and lowered using the metric 

gab Ip· 
This fact suggests the following construction. Fix 

any point p of M and consider the n{n + 1)/ 2-dimensional 
(real) vector space Vp of pairs (!;a, Fab ) of vectors 
and skew-symmetric tensors at p. On this vector 
space, introduce the following bracket, [ , ]p, 

(1 ) 

It is obvious that the bracket is linear in each element. 
Thus, we have acquired an n(n + 1)/2-dimensional 
algebra associated with the point p. We shall denote 
it by lpo Note that the bracket is also skew symmetric 
in the two elements and that the "structure constants" 
of the algebra are completely determined by gab Ip 
and Rabe dip. (However, Ip is not an associative algebra, 
nor, in general, a Lie algebra,) We shall now prove 
several facts about isometry Lie algebras using the 
notion of Killing data and the existence of Ip. 

(0 It is obvious from the construction of Ip that there 
is a canonical mapping from the space of Killing fields 
on (M, gab) into [and, if (M, gab) admits the maximum 
possible number, n(n +1)/2, of Killing fields, onto] 
V,: send each Killing field to the element of Vp repre­
senting its Killing data at p. The mapping is clearly. 
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linear, one to one and bracket preserving. Thus, the 
isometrY Lie algebra of (M, gab) is a sub (Lie)-algebra 
of Ip for all p in M. 

(ii) Under what conditions is Ip a Lie algebra? Since 
the bracket is linear in each element and skew 
symmetric, one only needs to check the Jacobi 
identity 0 One obtainsl . 

with 

where f 1 2 3 denotes the operation of adding terms 
obtained 'by cyclic permutations of 1, 2, and 3, 
If the data under consideration do actually arise 
from Killing fields, the Jacobi identity is, of course, 
automatically satisfied, Thus, if (M, gab) admits 
three or more Killing fields, the Riemann tensor is 
alKebraicall\' constrained at each point of M. 

Next, using Eq, (2), it is straightforward to check 
that Mab=O for all triplets (~a,Fab)' (!=,a,F ab ), and 

1 1 2 2 

(2) 

Ua, F ab) in V p if and only if the Riemann tensor at p is of :i' 3 
constant curvature; Ip is a Lie-algebra if and oilly if R abed 
= [(2R/ l1(n - 1) lKale KdlbIP' where R is the scalar curva­
ture at p, Note that the condition on the Riemann 
tensor restricts its value only at the point p; the 
Riemann tensor is not required to be of constant 
curvature everywhere, not even in a neighborhood of 
p, This fact will play an important role throu?;hout 
this section, 

It is easy to check using Eq, (1) defining ( , ]p that 
if R abcd = [(2R/n(n-l)] galcgdlblP' the Lie algebra Ip 
is isomorphic to the deSitter Lie algebra D(n, sgn gablP' 
sgn Rip), L e., to the n(n - 1)/2-dimensional Lie algebra 
of isometries of a l1-manifold equipped with a metric 
of constant curvature, the Signature of the metric 
being the same as that of gab\p and the sign of the scalar 
curvature being the same as that of R ) P' Hence we 
are led to the following result: Kit'en (M. gab)' if there 
exists a point p in M such that RabcdlP = [(2R/n(n-l)] 
galcgdl blp' then the isometry Lie algebra 
of (M, gab) is a sub-Lie algebra of D(n, sgngab Ip' 

sgn R I p\ 0 In particular, one has the following result 
of interest to general relativity: If the Riemann tensor 
of a space-time vanishes even at a Single point, then the 
Lie algebra of its Killing fields is a sub-Lie algebra 
of the Poincare Lie algebra, 

(iii) Let n=2. Then the Riemann tensor always 
satisfies Rabcdl P= RCalcgdlblP for all pin M. Thus, in this 
case, Ip is always a (three-dimensional). Lie algebra. 
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(This does not of course imply that every 2-manifold 
admits three Killing vectors: The scalar curvature R 
need not be a constant function on M. ) Hence, we recover 
the well-known result that the isometry Lie algebra 
of every 2-manifold is a sub-Lie algebra of the 
isometry Lie algebra of some 2-manifold with constant 
scalar curvature. This result is in turn useful in 
proving facts about metric manifolds which admit 
exactly two Killing fields: Using the definition of the 
bracket [ , ]p, a complete list of possibilities relating 
the Abelian or non-Abelian character of the isometry 
Lie algebra with the Sign of the scalar curvature and 
the signature of the metric on the integral manifolds 
of Killing fields can easily be obtained. 

(iv) Let M be an n-manifold" Let there exist 11 

commuting Killing fieldS on (M, gab) which span the 
tangent space at some point p of IVl, We shall show 
that gab is necessarily flat and that (M, gab) cannot 
admit any additional Killing fields which commute with 
the given n, Note first that since the given n Killing 
fields are closed under the Lie bracket, and since they 
span the tangent space at p, they span the tangent 
space at even' point of AI" [This follows from the fact 
that if, on an n-manifold, a Killing field vanishes on 
a (n - 1) surface, it must vanish everywhere, which, 
in turn, follows from the result that a Killing field 
is completely characterized by its Killing data at 
anyone poinL ] Furthermore, since all Killing fields 
commute, one can choose suitable linear combinations 
to obtain n orthonormal Killing fields whose derivatives 
vanish identically. Next, using the expression of the 
bracket [ . ]p and the fact that the isometry Lie algebra 
of (M, Kab) is a sub-Lie algebra of Ip, it follows that 
the RIemann tensor RaIled of (M, gab) must vanish 
Identically" Finally, using the expression of the 
bracket I , ]p (and the fact that R abed = 0), it follows 
that Ip cannot admit any element which does not belong 
to the n-dimensional Abelian sub-Lie algebra of the 
elements of the type (~a, 0) and which commutes with 
every elem0nt of this sub-Lie algebra. Hence it 
follows that (M, .!iab) cannot admit any additional 
Killing fields which commute with all the /I given 
Killing fields. 

The assumption that the Killing fields span the 
tangent space at some point is unecessary if either 
n "- 4 or if gab is positive definite: In these cases, 
the fact that the Killing fields commute itself 
implies that they must span the tangent space at 
each point of ,'vI. 2 Thus, one has the following result" 
An n-dimensional metric manifold (M, Kab) caunol 
admit more [han 11 commuting Killing fields alld 
Kab is necessrrril\' flat if it does admit 11, proFided 
at least one or Ihe following conditions is mel: (a) 
n·",4, (b) Kab is positil'e definite. 

Results discussed above are only meant to illustrate 
the use of the notion of Killing data and the existence 
of the algebra Ip to prove properties of Killing fields; 
the class of results that can be established using 
these techniques is by no means exhausted" Indeed, 
essentially every elementary fact about isometries 
can be proved in a rather simple manner via these 
techniques. 
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B. Conformal Killing data and the algebra Cp 

We shall now discuss, briefly, a generalization 
of the notion of Killing data and of the algebra I p, a 
generalization which will serve as a useful tool in 
the investigation of conformal isometry Lie algebraso 
The notions to be discussed in this subsection will 
also be of direct use in Sec. 3. 

Consider again an n-dimensional manifold M, 
equipped with a metric gab of arbitrary signature. 
Fix a conformal Killing field t a on (M, gab)' Then, 
using the conformal Killing equation, one obtains 

Thus, the quadruplet U;a, V[atb], Vata, Va(Vmt"')Jp 
at any given point p in M suffices to determine the 
conformal Killing field to evervwhere. We shall 
therefore refer to this quadruplet as the conformal 
Killinx data of t a at p (relative to gab)' 

Consider now the vector space V/ of quadruplets 
(~a, Fab , <P, Ka) at p, where ~a is an arbitrary vector; 
F ab , an arbitrary skew tensor; <P an arbitrary number; 
and, Ka an arbitrary covector. This space is clearly 
(n + 2) (n + 1 )/2-dimensional. Following the procedure 
used in the case of the Killing data, we now introduce 
a bracket on this Vp": 

{W, fab' t, 1[a)' (f, {ab' t, Ifa)}p 

with 

~a==~mF a_~"'F a_<p~a+<p~a, 
3 1 2m 21m 12 21 

(3) 

<P == ~aK _ ~aK 
3 1 Za 2 la' 

Ka ==KmF rna - KrnF ma + <pKa - <pKa + [II (n - 2)) Babee;:e 
312 21 1221 12: 

Here, Sab=Rab - (RI2(n-l)gab' and, Babe=V[bScJa 
is the Bach tensor, (For n> 3, B bed == H(n - 2)1 (n - 3)J 
x yoaCaoed via the Bianchi identity. ) The bracket is clearly 
linear in each element. We have obtained a (n + 2)(n + 1)/ 
2-dimensional algebra. Denote it by Cpo 
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As in the case of the algebra Ip , one can investigate 
the structure of the algebraC p' We shall mention 
only two aspects: (i) it follows from the definition of the 
bracket { , }p that the conformal isometry Lie 
algebra of (M, gab) is a sub-Lie algebra of C p for each 
p in M; and, (ii) Cp is a Lie algebra (i. e., {, }p 
satisfies the Jacobi identity) if and only if one of the 
following holds: (a) n=2; (b) n=3 and Babeip=O; or, 
(c) n>3 and, cabeaip==O, yoacabeaip=O. Again, one 
can use these facts to prove properties of conformal 
Killing vectors. 

Remarks: (i) Note that, although the notion of 
conformal Killing fields is conformally invariant­
it refers only to the conformal structure rather 
than to the Riemannian structure on M-the notion 
of conformal Killing data is not; to obtain the data 
from a conformal Killing field, we have used a specific 
metric in the conformal class. This is the reason 
behind the presence of nonconformally invariant 
terms (involving the Ricci tensor) in the structure 
constants of the bracket { , }p. The final results-
e. g., the necessary and sufficient conditions for 
{ , h to be a Lie bracket-are, however, conformal-
ly invariant, as they must be. It would, nonetheless, 
be desirable if the entire analysis could be carried out 
in a manifestly conformally invariant fashion, (ii) The 
condition for Ip to be a Lie algebra involves only the 
value of the Riemann tensor at p while the analogous 
condition for Cp involves both, the value of the Weyl 
tensor and that of its derivative at p. This difference re­
flects the fact that whereas the metric structure is 
rigid of order one the conformal structure is rigid of 
order two. 3 

3. ASYMPTOTICALL Y FLAT STATIONARY 
SPACE-TIMES 

We shall now use the tools developed in the previous 
section to analyze symmetries of stationary isolated 
systems in the framework of general relativity" 

Fix a stationary space-time (M, gab' tal, Denote 
by S the manifold of orbits of ta, and by hab , the 
natural metric on So The space-time (M, Xab' tal 
will be said to be asymptoticalh flat at spatial 
infinity provided there exists a C~ 3-manifold S 
equipped with a C~ metric Ii b satisfying the following 
conditions4

: (0 As a point set, § = SUA, where A is a 
single point; (ii) hab is positive definite in a neighbor­
hood of A and hab = n2 

hab on S where n is a scalar 
field on S which is C2 at A and C~ elsewhere; (iii) 
At A, n = 0, Dan = 0, and, DaDbn =: 2hab , where Dis 
the derivative operator on (S, hab ); and (iv) there exists 
a neighborhood N of A in S such that in rr-1(S n N) 
Einstein's vacuum equation is satisfied, where 1T is 
the natural projection mapping from M onto S, 

Throughout this section we shall assume that the 
given stationary space-time (M, gab' fa) is asympto­
tically flat in the sense of this definition; we wish to 
analyze the constraints imposed on the structure of 
additional Killing fields of (M, Kab) by the assumption 
of asymptotic flatness at spatial infinity, 
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Recall, from Sec. 2, that if the curvature tensor 
of a metric manifold vanishes even at a single point, 
its isometry Lie algebra is a sub-Lie algebra of that 
of a flat manifold (of the same dimension and equipped 
with the metric of the same signature). Since (S, hab) 
is asymptotically Euclidean4 -its curvature vanishes 
asymptotically-one might expect the isometry Lie 
algebra of (S, hab ) to be a sub-Lie algebra of the 
isometry Lie algebra of the Euclidean space. In the 
first part of this section we shall show that this 
expectation is indeed correct. In the second part, we 
~hall further assume that the total mass associated 
with the space-time is nonzero, and analyze the 
additional restrictions imposed by this assumption 
on the permissible isometries. In each case, the 
analysis of permissible Killing fields on (S, hab) will, 
in turn, yield information about the structure of 
isometries of (M, ,!;ab)' 

A. General asymptotically flat space-times 

Let us begin by analyzing the structure of the 
isometry Lie algebra of (S, hab)' The key idea is to 
examine the behavior of Killing fields on (S, hab) 
at the point A at infinity. Since the point A belongs to 
the completion S and not to S itself, and since the 
metric h is not even defined at A, (recall that nl A = 0), ab 
we must first regard Killing fields on (S, hab) as 
conformal Killing fields on (S, Izab ) and then look for 
their extensions to the point A. Let ~ a be a Killing 
field on (S, hab)' Then, L Jiab =2Q-l(L(S1)hab ; ~a is a 
conformal Killing field on (S, hab)' Since the metric 
Ii 'is smooth at A, ~a admits a smooth extension ga ab ~ 

to S. 3 (On S, ~a = ~a.) Hence, one can examine the 
conformal Killing data of ga at A. Since ~a is not only 
a conformal Killing field on (8, hab) but also a 
Killin,!; field on (S, hab ), its data at A are constrained. 
To see this, note first that given two asymptotically 
Euclidean spaces (S, hab ) and (S', h~b) [satisfying 
conditions (i), (ii), and (iiill with an isometry i from 
one to another, the mapping i extends uniquely to 
their completions (8, flab) and (8', h~b)' the point A 
in S being mapped to the point N in S', and the. metric 
h~ I to the metric Ji' I A 5 Note that, due to condition ab A ab ' 
(iii). one does not have the freedom of rescaling the 
metric at A: Only those conformal rescalings, n - wQ, 
are permissible for which w is (smooth and unit) 
at Ao (Thus, the m~tric at A is "universaL ") Consider 
now the one parameter family of diffeomorphisms 
generated by ga on S. Each of these diffeomorphisms 
is an isometry on (S, habL Hence, its natural extension 
to S must leave A and the metric hab at A invariant. 
Hence, ~a I A = 0, and Dag· I A = 0 0 G Thus, two pieces of 
the conformal Killing data of ~a vanish identically at 
A if ta is a Killing field on (S, habL 

Consider now the six-dimensional subspace V~ of 
the (ten-dimensional) vector spac~ V~ of :onformal 
Killing data at A of the form (0, F ab , 0, Ka)' This 
subspace is closed under the conformal Killing 
bracket {, }A [Eq, (3)]: 

{CO, fab' 0, Ifa), (0, tab' 0, ~{)}A 

= (0, tab' 0, 1a) 
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where 

fr F mfr fr mft and K =Kmfr _Kmp.. (4) 
3 ab = 1 a 2 mb - 2 a 1 mb 3 a Y 2 rna 2 1 ma 

Furthermore, the bracket { , }A on this subspace is 
a Lie bracket: Commutation relations (4) are precisely 
the same as those satisfied by the generators of 
isometries in the Euclidean space. [See the expression 
of Killing bracket in Eq. (1).] Finally, it is obvious 
from the above discussion that there is a natural one 
to one mapping from the vector space of Killing fields 
on (S, hab) into the six-dimensional subspace V~ of 
the space V~ of conformal Killing data at A, and that 
this mapping is bracket preserving" Thus, the isometry 
Lie al,!;ebra of (S, hab) is necessayily a sub-Lie al,!;ebra 
of the isomeir1' al,!;elJra of the Euclidean 3-space. 

Let us now return to Killing fields on (M, gab)' 

Let ~a be a Killing field on (M, ,!;ab) with the property 
that L cta = Kia. (Since L cta must itself be a Killing 
field, it follows that k must be a constant on Mo ) 
Set ~a = h\!;b, where hab = ,!;ab + I\.-ltatb, (I\. = - tata) 
is a natural projection operator on the 3-flat ortho­
gonal to La. (hab on M is the pull back of the natural 
metriconSo) Then, ta~a=OandLt~a=O. Thus, ~a 
induces, naturally, a vector field on S which we 
also denote by ~a 0

7 It is easy to check that this ~a is 
the generator of an isometry on (S, hab); L (hab = O. 
Let L denote the Lie algebra of Killing fields on 
(M) gab) whose commutator with ta is a multiple of 
/a" Clearly, the quotient Q of this L by ta is itself 
a Lie algebra. Furthermore, by above remarks, 
there is a natural imbedding of Q into the isometry 
Lie algebra of (S, hab ) ~ 

The assumption of asymptotic flatness at spatial 
infinitely constrains only the Lie algebra Q; no 
essential restriction is imposed by this assumption on 
the structure of Killing fields on (M, ,!;ab) whose 
commutator with ta fails to be a multiple of fa" Using 
the result obtained above concerning the isometry 
Lie algebra of (S, hab ), we can conclude the following. 
If (M, gab) is aS1'mptotically flat at spatial infinih', 
Q is a sub-Lie al,!;ebra of the Lie al,!;ebra of Killin,!; 
fields in the Euclidean spaceo In particular, the dimen­
'sion of Q can not exceed six, Q admits an Abelian Lie 
ideal of dimension less than or equal to three, and the 
quotient of Q by this ideal is a sub-Lie algebra of SO(3L 

B. Space-times with nonzero total mass: Further 
reduction of permissible isometries 

Without additional restrictions on the class of 
space-times being considered, we cannot hope to 
obtain further constraints on Killing fields: If (M, gab) 
is flat (S h ) would be isometric with the Euclidean , , ab • 

space and would therefore admit all six Killing helds" 
What we need therefore is a condition which rules out 
space- times whose asymptotic curvature "approaches 
zero too fasto" A natural candidate is the following: 
Demand that the total mass associated with the space­
time be nonzero. It turns out that this apparently 
weak condition imposes rather severe constraints on 
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the permissible isometries; the Lie algebra Q can 
now be shown to be a sub-Lie algebra of SO(3). 

Let us then assume that the total mass m associated 
with the space-time is nonzero. Consider on S the 
scalar field J defined byB j== A-2 Jlab[(DaA)(DbA) + WaWbJ 
where A= - taf' is the norm and wa ==Eabcar"ilCtd is the 
twist of the stationary Killing field. Then, JI A == 4m2

• 

Thus, in a neighborhood of A in 8, j is positive, 
Furthermore, since Einstein's equation holds in 
WI (N II S) where N is a neighborhood of A in § 
and n is the natural projection from M to S, it follows 9 

that J is C~ everywhere in N (including the point A). 
Let ~a be a Killing field on (S, hab) representing an 
element of Q. [That is, let there exist a Killing field 
1:" on (M, gab) whose commutator with ta is a multiple 
of ta and let ~b equal' hnbt;a. 1 Then, it follows that 
L (A-2hab[(DaA)(DbA) +wawbJ=O on S, and hence, L ~ 
=-2$]onS, whereci?=~Da~a. Taking the derivative 
of this equation and evaluating the result at A, one 
~Main~ 2fKai A = - FamDmfl A' where Ka =Daci? and 
Fa'o =D[a~bl' Thus, if the total mass associated with 
the space-lime is nonzero, conformal Killing data 
of ga at A are further constrained; 
the "Ka piece" of the data is completely determined 
by the "iab piece" and the value of Da logj at A. 8 

Consequently, the element of Q represented by 
~a can be now completely characterized by the value 
of Dlag bl at A: If DlagbIIA==O, then ~a=o everywhere on 
S, ::;ince the vector space V~ of second rank skew tensors 
at A is only three-dimensional, we can now conclude that 
if the total mass m associated with the space-time is 
nonzero, the dimension of Q can not exceed three, 
(N?!e that if~ m 0:: 01 the left side of the equation 
2fKa I A = - Fa mDmf I A vanishes identically and the 
fourth piece, Ka, of the conformal Killing data of ~a 
at A remains unconstrained, ) 

How is the Lie algebra structure of Q constrained? 
Let us equip the three-dimensional vector space V~ 
with the following bracket: 

Then, it is obvious from Eq, (4) that the natural 
imbedding of the vector space underlying Q into 
V~ [which sends the element of Q represented by 
the Killing field ~a on (8, hab) to the skew tensor 
Dlag b ] 1 A] maps the Lie bracket between elements 
of Q to the bracket { , }~ of Eq, (5), Note, also 
that { , }l is a Lie bracket and that (V~, { , }~) 
is the Lie algebra of SO(3). 

Thus, we have obtained the following result: if 
(M, gab) is asymptotically flat and if the total mass 
associated with it is nonz ero, Q is a sub-Lie algebra 
of 80(3). In particular, the dimension of Q is either 
zero or one or three. 

If Q is three.dimensional, (S, hab) is spherically 
symmetric at least in a neighborhood of A" 10 Denote 
the three Killing fields on (S, hab) by ~a, i==1,2,3, 
and the corresponding Killing fields ob (M, gab) by 
l:a(~a == hba?;b). 7 Using the fact that ~a can be chosen 
I j j I 

so that their orbits are closed on (S, hab)' it follows 
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(5) 

that t a must commute with ta on M. Next, using this 
i 

fact and the commutation rf!lations of ~a, it follows 
i 

that ~a themselves are Killing fields on (M, gab)' Thus, 
i 

(M, gab) is itself spherically symmetric and hence, by 
Birkhoff'sll theorem, isometric with the Schwarz schild 
space-time in a neighborhood of infinity where 
Einstein's equation holds. Thus, we have the following 
result, If a stationary space-time (M, gab' f') with 
nonzero total mass admits more than one Killing field 
whose commutator with f' is a multiple of ta, then at 
least one of the following must hold: (i) gab is 
isometric to the Schwarzschild metric outside a possible 
li10rld tube, or, (ii) (M, gab' tal fails to be asymptotical­
ly flat at spatial infinity. 

The fact that Q cannot be of dimension two has an 
interesting consequence: An as),mptoticallJflat 
stationary space-time with nonzero mass can not be 
axisymmetric about two distinct axes unless it has 
additional isometries (e.g., spherical symmetryL For, 
if it has no additional isometries, by Carter'sl2 
theorem, each axial Killing field must commute with 
the stationary Killing field and hence Q must be 
two-dimensional. 

Note, finally, that we can classify Killing fields on 
(8, hab ) by their behavior near the point A at infinity, 
If the second piece, frab == Dla~bP of the conformal 
Killing data (w. r, to a rescaled metric hab ) of a Killing 
field ~a on (S, hab ) vanishes at A, the one-parameter 
family of diffeomorphisms generated by fa on § leaves 
not only the point A but also the tangent space at A 
invariant; its action is nontrivial only in the second 
jet over A. Such a Killing field may be called a 
translation, [Note also that, if D[a~blIA ==0, the norm 
hab~a~b of ~a on (S, hab ) remains bounded as one 
approaches A.] If Dla~b] 1 A '" 0, then, although the 
action of ~a on S leaves the point A invariant, it 
causes a rotation in the tangent space at A. Such a 
Killing field may be called a rotation. (As one might 
intuitively expect, its norm w. r. t. the metric hab 
does grow unboundedly as the point A is approached 
along any smooth curve.) Note that, in this terminology, 
although the notion of a "pure" translation is 
meaningful, that of a "pure" rotation is not: If 
iab I A '" 0, the value of the fourth piece Ka 1 A of the 
conformal Killing data fails to be conformally invariant, 
This is precisely the situation one expects from the 
structure of the group of isometries in the Euclidean 
3.space. Finally, it follows from our discussion 
above that if (S, hab ) is a manifold of orbits of a 
stationary space-time with nonzero mass, which is 
asymptotically flat at spatial infinity, (S, hab ) can not 
admit a translation Killing field, 

4. DISCUSSION 

There exist several methods of generating new 
solutions of Einstein's equation with one or more 
Killing fields. It is often the case that although one can 
generate solutions with relative ease, one can not 
associate any simple phYSical interpretation with these 
solutions. A major obstacle is that it is difficult to 
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decide whether or not a given solution is asymptotically 
flat, Results obtained in Sec. 3 may turn out to be 
especially useful in making these decisions. Indeed, 
most of the new solutions obtained by these methods 
are relatively rich in isometries. Hence, by examining 
the isometry Lie algebras, one might be able to 
draw conclusions on the asymptotic behavior of these 
solutions. For example, if a given solution admits 
a timelike Killing field, and, in addition, more than 
one Killing field which commutes with the timelike 
one, one can conclude that the solution does not 
represent a new and interesting model for isolated 
systems: If its total mass is nonzero, either it is 
Schwarzschildean in a neighborhood of infinity or it 
must fail to be asymptotically flat. Thus, results 
obtained in Sec 0 3 represent a curious interplay between 
local and global properties of space-times. 

The discussion of Sec 0 3 also yields some insight 
into the notion of asymptotic flatness at spatial infinity. 
On the other hand, the results obtained are essentially 
exhaustive: One has been able to prove most of the 
properties of Killing fields that one intuitively expects 
to hold in the case of stationary space-times which 
are asymptotically flat at spatial infinity. Since none 
of the conditions in the definition of asymptotic 
flatness was introduced for the express purpose of 
analyzing isometries, the fact that an exhaustive 
analysis is pOSSible, and furthermore leads to 
intuitively expected results, provides a strong 
support in favor of this definition, On the other hand, 
every result in Sec. 3 is subject to the rather severe 
restriction of stationarity. Why was this restriction 
made? It is because, only in the case of stationary 
space-times does one have a completely unambiguous 
notion of asymptotic flatness at spatial infinity which 
is free of controversies and which does not refer to 
null infinity. 13 Thus, the major limitation of the 
present analYSis stems directly from that of the 
notion of asymptotic flatness at spatial infinity itself. 
One can14 similarly analyze the constraints on 
isometries imposed only by asymptotic flatness at null 
infinity. In this case, one does not need to restrict 
oneself to stationary space-times. 

Finally, we wish to emphasize that the analysis 
made in Sec. 3 represents only an illustration of the 
use of techniques developed in Sec. 2 to a case of 
interest in general relativity; these techniques are in 
fact applicable to a wide variety of situations. 
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2Let us assume that there exists a point p at which the n 
given Killing fields span a m flat with m < n. Then, there 
must exist k =0 (n - m) independent Killing fields whose data at 
p is of the type (0, F ab). USing the fact that the n Killing 
fields commute and the first piece of the Killing data in the 
expression of the bracket, [, Jp, between two data, it follows 
that k > 3 and n > 4. Let us now assume that n > 4 and that the 
metric gab is positive definite. Then, again using the expres­
sion of the bracket, [, Jp it is easy to show that the Lie alge­
bra of the k Killing fields (whose data at p is of the type 
(0, Fab)J is necessarily a sub-Lie algebra of SO(k). This is 
however impossible since SO(k) does not admit a k-dimen­
sional abelian sub-Lie algebra. Hence the assumption that 
the Killing fields span a m flat at p with m < n is inconsistent 
with the assumption that the n Killing fields commute. 

3For details, see, e. g., R. Geroch, Commun. Math. Phys. 
13, 180 (1969). 

4For the motivation behind the conditions in the definition as 
well as for details, see R. Geroch, J. Math. Phys. 11, 2580 
(1970) and R.O. Hansen, J. Math. Phys. 15, 1 (1974). 

5See the first paper in Ref. 4. 
GAn alternative and more analytic proof is the following. 
Since ta and Tzab are smooth everywhere on (S, hab), it follows 

L ~ L~ I~ ~ ~ 
that thab is ¥so smooth. Howev!r, ,hab= 2rt- (~mDmfl)hab' 
Next, lim_ADaS"l1l2 exists by I'Hopital's rule and is just the 
unit tangent vector to the curve of approach to A. Hence, 
lim _Ata= O. The result .$ = 0 follows from the fact that since 
~a generates isometries on (8, hab ), L"{hab I A = O. 

7There is a natural isomorphism between tensor fields on 8 
and tensor fields on M all of whose indices are orthogonal 
to t" and whose Lie derivative by t" vanishes. We shall not 
slistinguish between tensor fields related by this isomorphism. 

8j is just one of the scalars constructed out of gab and t" which 
could have been chosen for the present purpose. Any other 
scalar i' which is C2 and nonzero at A and which satisfies 
L{i' =.$R where R is C1 and~ nonzero a! A, will lead to a 
constraint on the values of Fab I A and Ka I A. 

9See the second paper in Ref. 4. 
JOlt suffices to show that there exists a neighborhood of A at no 

point of which the tangent space is spanned by the three 
Killing fields. Suppose no such neighborhood exists. Then, 
using the fact that the Killing fields satisfy the commutation 
relations of SO(3). it follows that the norm A of t" must be 
constant in a neighborhood of A, and hence, that the total 
mass m associated with (M,g •• , t") must vanish. 

11G. D. Birkhoff, Relativity and Modern Physics (Harvard U. P., 
Cambridge, Mass., 1923). 

12B. Carter, Commun. Math. Phys. 17, 2:~3 (1970). 
13In the nonstationary context, two possibilities present them­

selves: One might continue to use a "three-dimensional" 
notion of asymptotic flatness at spatial infinity, replacing the 
manifold of orbits S by a spacelike Cauchy surfaee, or, 
one might formulate the notion of asymptotic flatness in a 
completely new "four-dimensional" spilC:.it. If S is replaced by 
a Cauchy surface, the rescaled metriC hab cannot be C~ at 
A and there is some controversy about the precise degree of 
differentiability that one can demand. Also the question of 
uniqueness of the conformal completion is still open. In any 
case, the "four-dimensional" approaches appear to be more 
promising if one is interested in analyzing isometries of 
space-time as a whole. In particular, when technicalities 
concerning Sommers' ("four-dimensional") definition of 
asymptotic flatness are settled, making his boundary "Psi" 
completely unambiguous, one might be able to generalize 
the present analysis of isometrics to nonstationary space­
times. (See P.D. Sommers, J. Math. Phys. 19, 549 (1978). 

14A. Ashtekar and B.C. Xanthopoulos, "Isometrics compat­
ible with asymptotic flatness at null infinity: A complete 
description," (to appear in J. Math. Phys.). 
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The separability of the sine-Gordon equation (SGE) is defined and studied in detail. We find a general 
class of dependent-variable transformations under which the SGE is separable. This class may be reduced 
to a two-parameter generalization of the usual transformation adopted, by requiring the transformations to 
reduce to the identity in the linear limit of the SGE (i.e., the Klein-Gordon equation). The method 
developed for studying the separability of the SGE is then applied to more general quasilinear equations 
and a discussion of the limitations of the method, and of separable solutions in general, is also given. 

1. INTRODUCTION 

Interest in nonlinear or, to be more preCise, quasi­
linear wave equations has focused in recent years on 
the sine-Gordon equation (SGE) 

CPxx - CPtt = sincp, (1.1) 

where cp(x, t) is a scalar field in one space (x) and one 
time (t) dimension and the subscripts denote partial 
derivatives of cp with respect to x and t. The SGE is 
Lorentz covariant, has a variational derivation and, as 
a mathematical model describing a variety of interesting 
wave and particle phenomena, has remarkable proper­
ties at both the classical and quantum levels. There is 
a vast literature on the subject and much of this can be 
traced from the pellucid review articles of Barone 
et al. ,1 Scott et al. 2 and Rajaraman. 3 

Now most of the classical studies of the SGE and its 
applications have concentrated, quite naturally, on the 
soliton solutions and some of the associated formal 
properties (infinite number of conservation laws, 
Backlund transformations, inverse method of solution, 
separable Hamiltonians etc.). However, the equation 
also has an underlying mathematical structure which 
needs to be investigated from a much wider point of 
view. For example, the initial value problem for the 
SGE and similar equations, such as the Korteweg-de 
Vries and its modified forms, can all be solved by 
linear methods using the inverse scattering formalism. 4 

The question then arises as to whether this is merely 
a technique which happens to work for these equations, 
equivalent to, say, the reduction of an integral to 
standard form, or does it imply some deeper struc­
ture? If the latter is true, and this seems probable, and 
if, as seems likely, equations of this type are going 
to play an important part in the development of non­
linear physics, then it becomes desirable to develop 
a body of fundamental theory for these equations cor­
responding to that existing for, say, the linear partial 
differential equations of mathematical physics. As a 
possibly useful contribution to this development we 
present, in this paper, a report of an attempt to for­
mulate and answer some of the questions that would 
arise in such a fundamental theory. In particular, we 
study the problem of the separability of the SGE and 
similar nonlinear equations. 

Throughout the paper we shall assume, unless other­
wise stated, that cp(x, t) is a continuous map from 

(x, t) to the reals which is at least twice differentiable 
with respect to both x and L The domain of cp is thus 
the whole of IR2, while its range is, in general, the 1-
sphere (L e., the space of real numbers modulo 21T 
with the usual metric). 

2, SPECIFICATION OF THE PROBLEM 

The question of the separability of the SGE first 
arose, in a somewhat implicit manner, in a 1971 paper 
by Lamb. 5 Lamb showed that (1.1) possesses a class of 
solutions of the form 

(2.1) 

where the single variable functions X and T are solu­
tions of the uncoupled, ordinary differential equations 

(X')2 = pX4 + mX2 + q, 

(T'F = - qT4 + (m _1)T2 
- p. 

(2.2a) 

(2.2b) 

The primes in (2.2) denoting ordinary derivatives while 
p, q and m are arbitrary constants which may be com­
plex. For example, choosing p = q = 0 gives single soli­
ton solutions with speed 11 = '{([---=17 niT. 

More recently (1976), Zagrodzinski6 extended Lamb's 
analysiS by showing that both (101) and its "elliptic" 
variant 

CPxx + CPtt = sincp, 

when combined into one equation 

CPxx +ECPtt =sincp (E=± 1), 

have solutions of the form 

cp(x, t)=± 4tan-1[X(x)T(OJ + (1T/2)(1 - 0) 

provided that 

(X')2 =pX4 + omX2 + q, 

E(T')2 = qr + 0 (1 - m)T2 + p, 

(2.3) 

(2.4) 

(2.5) 

(2.6a) 

(2.6b) 

where B = ± 1 and p, q, m co ~ the field of complex num­
bers 0 Note, however, that the two different values of 
o do not give independent solutions of the SGE, and so 
one can use either value to generate all the solutions. 
In this paper we shall conSistently use the value 
0=+1. 

The existence of solutions of the type (2.5) show that 
the SGE and its elliptic variant are separable, not in 
terms of the original dependent variable cP, but rather, 
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in terms of a new dependent variable 

(2.7) 

This leads us to pose the following questions: 

(1) Is the dependent variable transformation (2.7) the 
only transformation of (2.4) which leads to a separable 
equation for ~{x:, t) [i. e., one in which the functions 
X( x) and T(t) can be separated based on the assumption 
that ~(x, t) = X(x)T(t)]? 

(2) If there is more than one transformation cp- g(~) 
which leads to a separable equation for 1jJ, then does 
this imply that the solutions (2.5) are only a subset of 
the set of all solutions of (2.4) of the form cp = g(XT)? 

Our answers to these and related questions, together 
with the relevant analysis, is given below. The plan of 
the rest of the paper and a summary of our main find­
ings are as follows. In Sec. 3 we develop a method 
(for a limited class of equations) for deciding on 
whether a given nonlinear or quasilinear partial dif­
ferential equation is separable or not. In Sec. 4 we use 
this method to investigate the separability of the SG E. 
We find that there is a general class of dependent vari­
able transformations, expressed in terms of Jacobian 
elliptic functions, 7 under which the SGE is separable and 
of which (2.7) is a particular example. The occurrence 
of the elliptic functions is not surprising since the 
genealogy of separable solutions of (2.4) begins with the 
simple pendulum equations which, of course, has 
elliptic function solutions in general. The existence of 
this general class of transformations leads to a wider 
set of separable solutions than that given by (2.5). How­
ever, we show that this set may be restricted to a two­
parameter generalization of (2.7) by requiring that in 
the linear limit of the SGE, i. e., the Klein-Gordon 
equation, the transformations reduce to the identity. 
In Sec, 5 we apply our method to more general quasi­
linear equations and treat, in particular, the SGE in 
one time and two space dimensions. Finally, in Sec. 6, 
we discuss the limitations of our method and of separ­
able solutions in general, 

3. SEPARABILITY OF PARTIAL 
DIFFERENTIAL EQUATIONS 

Any homogeneous, linear partial differential equation 
in two independent variables, 

L[<f.J(x,t)]=O, (3.1) 

is separable providing a function j(x, t) exists such that 

L[X(x)T(t)] = [K(X) + h(t) If(x, t)X(x)T(t) , (3.2) 

where L is a linear partial differential operator and it 
is assumed that cp(x,t)=X(x) T(t).9 If Eq. (3.1) has 
constant coefficients, then it is separable if j(x, t) = 1. 
We are not concerned here with separability criteria 
depending on given initial and boundary conditions, but 
only with the separability of the operator L itself. 

The rule (3.2) is not readily extendible to the general 
nonlinear case. For example, putting ~.' = tan(<p. 4) in 
(1.1) gives us the transformed equation 

1574 J. Math. Phys., Vol. 19, No.7. July 1978 

which is separable, according to Lamb and 
Zagrodzinski, if ~(x,t)=X(x)T(t), but rule (3.2) is 
clearly not applicable. We thus have to look for a 
general rule which can be applied at least to certain 
types of nonlinear, partial differential equations. 

Consider the equation 

~ Pn(</J)Qn(~"" 1jJ",,,,) =R(~), (3.4) 
n 

where CI!=x and./or t, ~'=~(x,t) and Pn,Qn and Rare 
polynomials of any given degree with each Qn being a 
sum of a polynomial in </J", and a polynomial in J",,,,. By 
hypothesis, let if; (x ,t) = X(x)T(t). Substitution in (3.4) 
then leads to the equation 

~Pn(XT)Qn(X'T, T'X, T'X' ,X"T,]'" X) = R(XT). (3,5) 
n 

This is, in general, an implicit relation between X, T 
and their derivatives and so the linear approach breaks 
down. However, if the equation is separable, we can 
write X=K(x) and T=h(t), where gand hare 1-1 and 
differentiable over the domains and ranges considered. 
It then follows that 

and 

T' (0 =h'(t) = h'(h·1(T» = (h' 0 Il,1)(T) =111 (T). (3.6b) 

In general, g(x) and h(t) will contain more than one 
arbitrary constant and so g1 (x:) and 111 (t) will also con­
tain at least one arbitrary constant. 

Now X' mayor may not be analytic in X over the 
range considered. Similarly for]", However, let us 
assume that each can be expanded in a power series as 
follows: 

~ 

X' = ~ ({rXT" , 
1" =0 

~ 

1" = :0 brTr+p, 
r=O 

(3.7) 

where aT' br l': rn and A and P lre possibly noninteger. 
If the ar , br exist and are finite, then Eq. (3.4) is 
separable. On the other hand, if ar' br do not exist, 
are infinite, or are all identically zero, then either our 
original hypothesis is incorrect and the equation is not 
separable in this form, or else the trivial solution 
~.(x, t) "" 0 is the only separable solution of the equation. 
If the series (3.7) terminate, they represent first-order 
equations which can be solved for X(x) and 1'(0. How­
ever, if the series do not terminate then the question of 
uniform convergence must be looked into [i. e., the 
differential equations (3.7) may exist for certain values 
of X, T, but not others I. 

Using formal differentiation and multiplication of 
power series on (3.7) and substituting into (3.4) leads 
to an identity of the form 

~P)XT) 
n 

xQ {± ({ XT+'T ± b yr'PX ;GA~r+AT i, B T'+pxl 
n r::O r '1'=0 r , r=O 'r~ r , 

=R(XT), 

where the Ar and Br are coefficients involving sums 
and products of the original expansion parameters. 

(3.8) 

This identity then gives us a set of recurrence relations 
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for the aT' bT, A, and p which, in principle, can be 
solved. There are two possible results. Either we get 
explicit and consistent expressions for the first-order 
differential equations (3.7), in which case (3.4) is 
separable, or else we are led to a contradiction and 
one of our original hypotheses is false. In the latter 
case the given partial differential equation may not be 
separable as it stands, or else the power series ex­
panSions for the derivatives of X and T may not be 
legitimate. 

Example: Consider the Korteweg-de Vries (KdV) 
equation 

(309) 

where ¢ == ¢(x, t)o This is not exactly of the form (304), 
but the method is readily extendible to the case where 
Qn contains I./;cr.o",,-' <t'0<cr.<Y.,,' etco If we now assume that 
¢(x, t) == Xed T(l) and carry through the procedure out­
lined above, we arrive at the Qrdinary differential 
equations 

X'==a, 

T' == - f3aT2, 

(3.l0a) 

(3. lOb) 

where a is an arbitrary constant. Solving these equations 
gives us the only separable solutions of the KdV equa­
tion as it stands, and these are 

¢ (x , t) = (x + b) / (f3 / + r), (3.11) 

where band c are arbitrary cons tants. 

The method can also be applied to linear equations 
which are separable according to rule (3.2) and this is 
best illustrated by means of an example. 

Example: Consider the partial differential equation 

¢xx+¢,+¢,,=O, (3.12) 

where ¢ = ¢(x,y). Let ¢ =X(x)Y(y) and, as there are 
no first derivatives of X in (3.12), substitute the 
expansions 

00 

X" = ~ arXr , Y' = ~ i>rY". 
,"=0 r=O 

This leads to the identity 

t a Xry + i; b yr X {1 + ~ rb YT') = 0 
1'=0 r T:: 0 r r::l r ~ 

(3.13) 

(3.14) 

and a consistent solution of the recurrence relations 
provided by this identity gives us the follOwing pairs 
of ordinary differential equations: 

Y' = aY, X" = - a(l + ({)X, 

Y' = - (1 + a)Y, X" = - a(l + a)X, 

(3.15a) 

(3.15b) 

where a is the separation constant. Solving these equa­
tions then leads to the usual separable solutions of 
(3.12). Note that the nonlinear method, used above, 
gives easier equations for X and Y (one first-order and 
one second-order ordinary differential equation) than 
the elementary method based on rule (3.2) (two second­
order equations), although the advantage in this case is 
minimal. 

The method can also be used to separate linear equa­
tions which have separable solutions, but which are not 
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separable by a single application of rule (3.2). For 
example, a fairly trivial equation which falls into this 
category is ¢xx + ¢xy + ¢,,= O. 

We now consider the special case of (3.4) in which the 
only terms occurring in the Qn are if xx ' <ttt' (i/JxF and 
(1/!t)2, i. e. , they are of the first degree in second de­
rivatives and not exceeding the second degree in first 
derivatives. The equation then takes the form 

(~y I\ (~,) + U 1)2 P2(~) + ~xxP3(J) + <1 tt P1(J) == R(~) 

(3.16) 

and assuming, in this instance, that (X')2 and (T')" can 
be expanded in power series in X and T, respectively, 
we arrive at the identity 

00 ~ 

F\ (XT) '6 2{{rXT+~T2 + Pz(XT) '6 2brTr+Px2 
~o nO 

+ P3(XT) t (Y + A){{rxr+~-lT + P4(XT) t (r + p)brT"+P-1X 
1'=1 7=1 

=R(XT). (3.17) 

In this case the problem is considerably simplified. 
Comparing coefficients in (3.17), it can be shown that 
A and p cannot be fractional. Also, if P 3 (XT) contains 
a constant term the series for (X')2 terminates, while 
if P 4 (XT) contains a constant term the series for (T')2 
terminates. Now the SGE falls into the special category 
represented by (3.16), but before we can show this we 
need the following lemma. 

L em In (( 3 . 1: An equation of the form 

(3.18) 

where A and B are constants, is not separable as it 
stands unless f(¢) == ¢. 0 

Proof: Equation (3.18) is a special case of (3,16), 
with slightly different notation, where P 1 = P z '" 0, 
P3 (¢) =A and p,(¢) =B. If we now assume separability 
and expand X" and T" in terms of X and T, respective­
ly, and expand f(XT) as a power series in XT, then the 
recurrence relations obtained from the resulting 
identity have a consistent solution if, and only if, 
f(XT)==XT. • 

We can now look at the SGE and its elliptic variant 
as given by Eq (2.4). If we exclude the trivial solu­
tions, ¢ == 2m! (n 'cc z), and the time-independent and 
space-independent solutions for which (2,4) auto­
matically reduces to an ordinary differential equation, 
then, using Lemma 3.1, we see immediately that the 
equation is not separable as it stands. In order to put 
it into a separable form it is necessary, as we shall 
see later, to make a dependent-variable transformation. 
Using the usual transformation ¢(x, t) = 4 tan-1J (x, t) 
gives us an equation of the form (3.16) with EP1 (J) 
==P2 (J)==-2EJ', EP3(1;)==P,U,)==E(1 +J 2

), and R(i/J) 
== 1f(1 - if) 0 A consistent solution of the recurrence 
relations of the corresponding identity (3.17), then 
leads directly to the Zagrodzinski equations (2.6) for 
real values of the parameters. However, it is a simple 
matter to extend the specification of the power series 
expansions to include complex coefficients as well and 
hence to recover the whole set of separated equations 
given by Zagrodzinski. 
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4. TRANSFORMATIONS OF THE SGE WHICH LEAD 
TO SEPARABLE FORMS 

In the last section we studied a method for separating 
(2.4) after it had been put into separable form via the 
dependent-variable transformation (2.7). We now turn 
our attention to the transformation itself and ask 
whether there are other transformations, either of the 
dependent variable or of the independent variables, 
which lead to separable forms of (2.4) or is (2.7) in 
some way unique? As an indication of the type of in­
formation that One can get from such an analYSis con­
sider, for example, the substitution of zt == tan (cp/2) into 
(2.4). In this case the equation reduces to 

(1 + 1jJ2)(ljJxx + Eifitt ) - 21(wx
2 + Ezt/) == 1jJ(1 + Ij?), (4.1) 

which, by the methods of Sec, 3, is not separable. 
Thus, in addition to the functional form of the trans­
formation, it appears that the use of the quarter angle 
is also critical. 

Now features such as the above are best studied once 
the transformations that lead to the separable forms of 
(2.4) are classified. Our first task, therefore, is to 
find and classify them. A useful Lemma, in this in­
stance, is the following: 

Lcm ill II 4.1: Dependent-variable transformations are 
the only transformations of (2.4) which lead to separ-
able forms. 0 

We imply here that there is no coordinatization of 
the domain of (2.4) which will lead to a separable equa­
tion. For example, the canonical form 

a2 ,",( til) 
4 'f' S, == sincp 

a ~a1) (4.2) 

is not separable. 

Pyoof: A general transformation of the independent 
variables changes (2.4) into an equation with variable 
coefficients, but maintains the linearity of its deriva­
tives. Thus, by a simple extension of Lemma 3.1, it is 
not separable. • 

The elimination of the independent-variable trans­
formations allows us to concentrate on the dependent­
variable transformations and we now state and prove a 
theorem about them. 

Thcoycm 4.1: The only dependent-variable trans­
formations which lead to separable versions of (2.4) 
are necessarily of the form 

cf>==K(<jJ(X, t)) = 2cos-lsnrnk~~)) , k} , (4.3) 

where 4! is the new dependent variable a, {:J, kC':IR-{O} 
with 1< < 1 and sn is a Jacobian elliptic function sine 
amplitude of modulus k. 0 

PYoof: Applying the dependent-variable transforma­
tion cp == g(~') to (2.4) we obtain 

We now assume that zt =X(x)T(t) and substitute the 
series expansions (X'? == 2;'';=0 2ar xr and (T')2 = 2;'-:'=0 2br T

r 

into (4.4). This gives 
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{ity(arxr-'T + EbrTr-,x)} g (XT) 

+{~ 2 (a.xrT2 +EbJrX 2+;" (XT) ==sinK(XT). (4.5) 

Since g is a function of XT, K I, K" and sin K must all 
be functions of XT. Thus, a necessary condition for 
(4.5) to be an identity is that the coefficients of xryr'llr 

on the lhs are consistent with the coefficients of (XT)r 
on the rhs. Hence, on eliminating the zeros on the lhs, 
we get the reduced equation 

where /32=2(1l:l+Eb2)' It follows, therefore, that a 
necessary condition for (4.4) to be separable is that 
g(ljJ) satisfies the ordinary differential equation 

This is a quasilinear, variable coefficient equation for 
g(1') and can be integrated in two stages. Firstly, 
multiplying the equation by 2,1( turns the lhs into the 
derivative of (~K')2 and hence leads to the integrated 
form 

Ug ')2 = C - (2/ (:J2) cOSK, (4.8) 

where C is an arbitrary constant. Next, making the 
substitutions 

It == cos (i[ 2) and 2 = In(a ~)) k15, 

where k2 (2 + Cp2) = 4, and a has been introduced to take 
care of the next integration constant, reduces (4.8) to 

(4.9) 

which is the defining equation for the Jacobian elliptic 
function sn(2 ,1<). Working backwards through the sub­
situations then gives us Eq. (4.3) and hence completes 
the proof of the theorem. • 

To get the subclass of nonelliptic transformations we 
have to put" = 1. Then, if we set p = - Jl (not necessari­
ly integra!), (4.3) reduces to 

~·=(1 a)tann(cp4), (4.10) 

which is a two-parameter generalization of (2.7). This 
leads to our next theorem. 

Theoyem 4.2: Separating (2.4), via the dependent­
variable transformations (4.10), leads to solutions of 
the form cp == 4 tan-1 (a 1 / "XT), whe re the separating 
functions X and T are solutions of the ordinary dif­
ferential equations 

(X')8 = jJx4 + IYIX2 + q (4.l1a) 

and 

(4.11b) 

respectively, and p, q, 112 are arbitrary constants which 
may be complex. 

Pya of: This theorem looks fairly obvious and it is. 
However, the proof, although straightforward, is some­
what tedious and so we shall only mention the main 
steps, We start by SUbstituting (4.10) into (4.4). This 
leads to the equation 
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l1if{ 1 + (t~ ~')2ln}(~,xx +Eljitt) 

- {(II + l)(a IjiFln + (u -l)}(~/ + E<I/) 

=n2<J,z{1 - (coWin}. (4.12) 

In order to eliminate terms such asi{.lln we first as­
sume that ~,=xnTn and then use the series expansions 
(X'F=2:~:o2a,xr and (T'J2=L;~:02brT'. This gives us an 
identity in which the coefficients are independent of n. 
A consistent solution of the recurrence relations of this 
identity then leads directly to Eqs. (4.11) and completes 
the proof of the theorem. • 

Remarl?: This theorem shows that the use of the gen­
eral transformation (4.10) leads to separable solutions 
of (2.4) which are independent of (t and n. Thus, there 
is no advantage to be gained by using (4.10) rather 
than its special case (2.7). 

We now consider the general transformation (4.3) of 
Theorem 4.1. Substituting into (4.4) and assuming that 
zj= XT leads to the equation 

- fjXT(X" T + E T" X) 

+ {i3 + 1? sn(/(, 1<)sn(u + J(,") H (X')2 T2 + dT' )2X2J-

= Il/32X2T 2 sn(u, k)sn(u + K, k), (4.13) 

where u = In((l1 <J'); kf3 and K is the complete elliptic in­
tegral of the first kind. We now run into a difficulty 
since the elliptic functions in (4.13) are only analytic 
about <1' = 0 if 1< = 1. We have already dealt with this 
case, but it is interesting to see how the restriction 
comes about. Suppose we assume that it is legitimate 
to consider the SGE at small values of its amplitude 
cp. In this case (2.4) reduces to the Klein-Gordon 
equation 

(4.14) 

which, of couse, is separable as it stands. However, 
other separable forms of (4.14) can be obtained by 
using the transformation cp = f{(iJ;) , where g IS a solution 
of (4.7) with sinf{ replaced by g. Thus, if we only con­
sider those solutions of (4.7) which, in the limit of 
smaU 1>, reduce to a solution of 

(4.15) 

with g(O) = 0, then this immediately restricts us to the 
set of nonelliptic transformations (4.10). 

One can, of course, get elliptic transformations which 
are linear in the limit of small cp, but only if we ex­
pand about finite values of <I'. For example, by con­
sidering the Taylor series expansion of sn(u,!?) about 
w= II. it is easy to deduce that the function 1, = exp(a + bx 
+ ell leads to a transformation of this type. The re­
sulting transformation is. linear in the lir:nit of small 
cp and, for appropriate choices of the constants in­
volved, leads to traveling wave solutions of the SGE of 
the form 

¢ =± 2 cos-lsn{(}/k)(x± vt),k}, (4.16) 

where v« 1) is the wave speed and y is the Lorentz 
factor (1 - V2 )-l I 2. The waves have an amplitude of 21T 

and a wavelength of 4Kkiy, and in the limit k = 1 re­
duce to a soliton or an antisoliton. Note, however, that 
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although the soliton is a limiting case of (4.16), solu­
tions with a finite wavelength (i. e., 0 < k < 1) cannot be 
obtained via the Zagrodzinski prescription (Eqs. (2.5) 
and (2.6) J. Thus, the elliptic and nonelliptic transfor­
mations lead to different classes of solutions with only 
the solitons in common. 

A feature worth mentioning, in the case of the elliptic 
transformation discussed above, is that the derivation 
of the transformation is constructive, i. e., it leads 
directly to the solution. 

5. SEPARABLE SOLUTIONS OF A MORE GENERAL 
EQUATION 

In this section we use the previous techniques to find 
solutions of the more general equation 

(5.1) 

whre Ei =± 1 and 1> is a scalar field in n dimensions. 
Since this is merely an extension to 11 dimensions of the 
equations considered in the last two sections, we shall 
go through the details fairly rapidly. 

Let 1> = g(~) be a transformation of the dependent 
variable in (5.1). The equation can then be written as 

(5.2) 

Let "(XII' .. x) = lli~lXi Ct) and (X;J2 = 2:";,,0 2a;rX/, Then, 
following through the arguments which led to (4.7), we 
find that a necessary condition for (5.1) to be separable 
is that g(~') satisfies the ordinary differential equation 

(5.3) 

where {32 ':C IR. As before, this equation can be integrated 
once to give 

(~g')2 =A + (2/{32) {fdl[, 

where A is the constant of integration. Putting 

± v {A + (2/ p2)f f dp)} = h(;;), 

(5.4) 

(5.5) 

separating the variables and integrating again, leads to 
the result 

In(rd) = I dg. Iz(;;) , (5.6) 

where (l' is a second constant of integration. 

In principle, (5. G) can be evaluated and the set of 
required transformations, cp = g(U.') , found for any 
particular f(4'). This is best illustrated by specific 
examples and we shall work through two of them after 
the following theo rem. 

Theore'/II 5 I: One set of solutions of (5.1) is always 

" cp(x\, .•. ,x) =,R-(exp(a + .0 ± m! /2x.», 
i= 1 I 

(5.7) 

where 

n 

B f. rn. = p2 and (I ('C IR. 
i =1 ~ t 

Proof: Using the transformation (5.6) on (5.1) leads 
to the only available separable equation (5.2). Now let 
lji(xlI •• .x) = Hi:l x;C,;) and 
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(X;)2 = rniX~, (S. 8) 

where i = 1, ... 11 and mj :c: JR, and substitute into (S. 2). 
This gives 

{t E.m.X. n xl i;'(J) 
i=1 l l t J#! J) < 

(S.9) 

which can be rewritten as (S. 3). But, by definition, 
g(<t) satisfies (S03)0 Therefore (S.1) separates, viag, 
into the ordinary differential equations (S08). Solving 
the set (S. 8) gives us the functions 

(S .10) 

where the a
i 

are integration constants, and substitution 
into W immediately leads to the separable solutions 
(S. 7) with a = 2:1=1 (Ii' This completes the proof of the 
theorem. -

Example 1: Consider the equation 

(S .11) 

which is a hyperbolic variant of Liouville's equation. 10 

In this case the transformation (S. 6) takes the form 

(S .12) 

where Ci, A and fj are, in principle, arbitrary. How­
ever, if we want real solutions for g(~'), then we must 
choose either A or {j2 to be negative. Performing the 
integral in (S .12) (which reduces to a standard form via 
the sUbstitution 11 = cK) then leads to the solutions 

[
IAlil2 (iA.11/2 )] g(J!) =In --2- sec2 '-2-~ In(oi/J) , 

for A < 0, (j2 > O. (S.13a) 

[
AI P21 (N/2 \1 

g(i/J)=ln 2- sech2 -2- In(aW))J' 

for A > 0, (32 < O. (S .13b) 

Now, from Theorem S. 1, we see that (5.11) has the 
following sets of traveling wave solutions: 

c,b(x,t) =In{sec2[a± JI1X± (m 2 -1)1/2tlJ) +ln2, (S.14al 

where a, rn'~ JR and where, for convenience, we have 
chosen IAI =4 and 1132 1 =1. The waves in (5014a) are 
periodic, while those of (5.14b) are sOlitary. Both 
solutions, however, are singular. 

Example 2: Consider the SGE in two space 
dimens ions, 

c,bxx+¢yy-¢tt=sin¢. (S.15) 

The transformations c,b = g(i/J) which lead to separable 
forms of (5.1S) are again those given by Eq. (4.3). 
Using Theorem 5.1 then gives us the traveling wave 
solutions 

1> (x ,y, t) =± 2 cos-1sn[(r!k)(x cos fi + Y sine - 1,t), k], 

(5.16) 

where y is the Lorentz factor, v is the wave speed and 
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e is the direction that the propagation vector makes 
with the x axis. The cross sections of these waves, 
taken parallel to the direction of propagation, are 
identical to the one-dimensional waves of Eq. (4.16). 
However, their lengths in the direction perpendicular 
to motion are infinite. This means that two-dimensional 
solitons, of the type given by the k = 1 limit of (S .16), 
are not localized entities and thus do not possess some 
of the desirable properties of the corresponding one­
dimensional solutions 011 

Another interesting point about the two-dimensional 
SGE is that it does not possess the variety of separable 
solutions that exist for the one-dimensional equation. 
Thus, if we let <t(x,y,t)=X(x)Y(y)T(t) and go through the 
procedures of Sec. 3 in order to obtain the two-dimen­
sional analogs of Eqs. (2.6), we find that we get only 
the degenerate cases 

(S .17) 

where the constants m, nand p satisfy the relation 
In + n - p = (j2 0 Hence, the solutions given by Theorem 
S.1 [of which (S .16) is an example 1 are the only separ­
able solutions of (S .15). This was not totally unexpected, 
of course, because of the symmetry between x and y in 
(5.15). However, it is unfortunate that this symmetry 
is not reflected in the soliton in the sense that the 
cross sections of the latter, along and perpendicular to 
its motion, are so different, On the other hand, the 
analysis leading to (5.17) does show that if there is a 
localized soliton solution of the two-dimensional SGE, 

then it is certainly not separable in terms of our defini­
tions. As to whether there is any connection between 
dimensionality, localization and separability in the case 
of soliton solutions of the SGE is a question that might 
be worth investigating. 

6. CONCLUDING REMARKS 

We have defined and studied, in some detail, the 
separability and the existence of separable solutions of 
the SGE and similar quasilinear partial differential 
equations. The method we have used is to first make a 
dependent-variable transformation which reduces the 
original equation to a separable form, and then assume 
power series expansions for the derivatives of the 
separating functions, in terms of the functions them­
selves, in order to further reduce the separable form 
to an identity; the latter operation being somewhat 
reminiscent of the Frobenius method for ordinary 
differential equations. A consistent solution of the re­
currence relations of this identity then gives us the 
separated ordinary differential equations corresponding 
to the original partial differential equation. In this 
manner we have demonstrated the existence of a general 
set of dependent-variable transformations which lead 
to separable forms of the SGE and have used them to 
discuss the existence and classification of separable 
solutions of the latter. Similar results have been ob­
tained for some other quasilinear equations. 

Our analysis, however, is still in its early stages. 
Thus, we have not discussed the "difficult" cases, nor 
have we considered the important questions of initial 
and boundary conditions. Now, it is well-known that 
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boundary conditions are intimately connected with the 
separable solutions of linear partial differential equa­
tions. 9 Thus, it is almost certain that boundary condi­
tions will playa prominent role in the separability 
problems of the nonlinear theory. On the other hand, in 
linear theory we have a principle of superposition, and 
the corresponding freedom to use Fourier series expan­
sion enables us to fit a great variety of initial condi­
tions either exactly or approximately. In the nonlinear 
theory we have no superposition principle and so the 
problem is that much harder. 

As far as the separable solutions themes elves are 
concerned, they do, of course, form only a subset of 
the set of all solutions. Nevertheless, they do give some 
insight into the structure of the differential equation 
and into the structure and formation of soliton solutions. 
For example, in the case of the one-dimensional SGE, 
both the one- soliton and two- soliton solutions are 
separable, but the three- soliton solution is not. Where­
as, for the two-dimensional SGE, only the single-soliton 
solution is separable. Furthermore, the dependent­
variable transformation used used to obtain separable 
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forms of the SGE are often the ones used to express 
more general solutions. 2 
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Several properties of instantaneous Cauchy surfaces are obtained. It is shown that a strongly causal 
spacetime admits an instantaneous Cauchy surface through each of its points, that there is a close and 
reversible relationship between these surfaces and maximal open globally hyperbolic subsets, that every 
instantaneous Cauchy surface is contained in a maximal instantaneous Cauchy surface, and that the latter 
surface is a maximal achronal surface which separates spacetime into past, present, and future. Some 
other properties of instantaneous Cauchy surfaces are discussed along with a refinement of an earlier 
topology change property. 

I. INTRODUCTION 

The preceding paper defined an instantaneous Cauchy 
surface to be an achronal set whose interior Cauchy 
development is maximal on the family of all such sets. 1 

Several examples were considered, and it was argued 
that instantaneous Cauchy surfaces may have an im­
portant role to play in analyzing the structure of sin­
gular spacetimes and quantizing fields on such 
spacetimes. 

Since one can construct spacetimes in which there 
are no nonempty achronal sets whatsoever. some 
restriction on the causal structure of spacetime is 
necessary if the spacetime is to admit the existence of 
an instantaneous Cauchy surface. The main result of 
this paper is an existence theorem which shows that 
instantaneous Cauchy surfaces can be found in all but 
the most pathological spacetimas. 

In Sec. II we establish our notation and collect some 
well-known facts about globally hyperbolic sets. The 
main existence theorem is stated and proved in Sec. 
III. Section IV considers the properties of maximal and 
minimal instantaneous Cauchy surfaces. It is found, for 
example, that any instantaneous Cauchy surface is con­
tained in a maximal instantaneous Cauchy surface which 
is also a maximal achronal set. Section V shows that a 
maximal instantaneous Cauchy surface is edgeless and 
that whenever two such surfaces have the same interior 
Cauchy development, they are homeomorphic. 

II. NOTATION AND USEFUL FACTS 

The notation of this paper is chosen to be compatible 
with the monograph by Hawking and Ellis2 and also with 
the monograph Tcc/wiqllcs of lJiJieren/ial Topology by 
Penrose. 3 One slight departure from the Hawking and 
Ellis notation is that we only require Cauchy surfaces 
and partial Cauchy surfaces to be achronal instead of 
acausaL Domains of dependence, determined by time­
like curves, are denoted by i5(5) as in Hawking and 
Ellis. The set that we almost always use is the in­
terior Cauchy development inti5(5) so that it is con­
venient to denote this set by DO(5). 

a)Supported in part by the National Science Foundati.on Grant 
No, MPS 74-18386-AOI. 

b)Supported i.n part by the Alfred P. Sloan Foundation. 

Global hyperbolicity can be defined in several ways. 
We use the definition in Hawking and Ellis2

: 

Definilion: A set ,",T is said to be globally hyperbolic 
if the strong causality assumption holds on N and if, 
for any two points p,q'cN, J+(p);1 ,T(q) is compact and 
contained in N. 

With this definition, the global hyperbolicity of lV is 
tied to the causal structure of the whole spacetime M. 
In particular, we will use the following obvious con­
sequence of this definition: 

(GHO) If N is a globally hyperbolic subset of a space­
time M and 5 is achronal relative to N, then 5 is 
achronal relative to .\1 . 

We list below som8 additional properties of Cauchy 
developments and globally hyperbolic sets which will 
be used in what follows. We assume that M is a time­
orientable spacetime. 

(GHl) For every achronal set 5, [;°(5) is globally 
hyperbolic .1 

(GH2) Each open globally hyperbolic set H, cons idered 
as a spacetime, contains a Cauchy surface 5. 5 In H, 
H=iJl(5). In ji, H [;')(5). 

(GH3) Each open globally hyperbolic set can be 
foliated by the achronal sets of (GH2). 6 

(GH4) If H is open and globally hyperbOlic, and Sand 
5' are as in (GH2), then 5 and 5' are homeomorphic. 7 

III. EXISTENCE 

Defillili(Jil: An achronal set 5 is an iIlS/(IJI/mICOI18 

Callclry surface if and only if, for any achronal set 5' , 
iJl(5)c iJl(S') implies iJl(5) = iJl(5'). 

Thcoyem 1: If .'vI is a strongly causal spacetime and 
p is a point of !VI, then there is an instantaneous Cauchy 
surface that includes I). 

Pyoof: Let Gp be the family of all open globally hyper­
bolic subsets of M containing /). By strong causality, p 
has an open globally hyperbOlic neighborhood so that 
Gp is not empty. Partially order Gp by set inclusion and 
let{G"la CC:A} be a totally ordered subfamily of Gp • 

The set,J ,,{ Ga} is open ::md globally hyperbolic and is 
an upper bound for the subfamily {G a}. By Zorn's 
lemma there exists a maximal member H of the family 
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FIG. 1. A nonmaximal instan­
taneous Cauchy surface, The 
example consists of two-di­
mensional Minkowski space­
time with two sequences of 
points removed so that their 
limit points (also removed) 
are null related. The surface 
S is an instantaneous Cauchy 
surface because the interior 
Cauchy development of any 
other achronal surface will 
necessarily encounter one of 
the removed points before it 
can include the development of 
S. Larger instantaneous 
Cauchy surfaces can be ob-
tained by adjoining to S points 
on the null line (dotted) that 
connects the limit points. 
These additional points do not 
contribute to the interior of 
the Cauchy development at all. 
Notice that the resulting 
larger instantaneous Cauchy 
surfaces may not be submani­
folds because they can include 
isolated points. 

G~. Now pEH, so by (GH3) and (GHD) we can find an 
achronal set S through p such that H c:;; DO(S). Since H is 
maximal DO(S) =H and S is the desired instantaneous 
Cauchy surface through the point p. 

Remark: A slight weakening of both the hypothesis 
and the conclusion of the existence theorem is possible. 
In a past(future)-distinguishing spacetime, one can 
show that an instantaneous Cauchy surface passes 
through each neighborhood of each point.8 The method of 
proof is the same as above except for one point: It 
must be established that each neighborhood is inter­
sected by an open globally hyperbolic set. This point 
can be established by a straightforward local 
construction. 

In the process of proving the existence theorem, a 
connection between instantaneous Cauchy surfaces and 
maximal open globally hyperbolic sets has been inti­
mated. In fact, for some purposes, one may be more 
interested in the maximal open globally hyperbolic sub­
sets of a spacetime than in the instantaneous Cauchy 
surfaces. For this reason, it is useful to state the 
exact nature of this connection. 

Proposition 1: An achronal set S is an instantaneous 
Cauchy surface if and only if DO(S) is a maximal open 
globally hyperbolic set. 

Proof: Suppose that H is an open globally hyperbOlic 
set such that DO(S) c:;; H. By (GHD) and (GH2) one can find 
some achronal set S' with DO(S)C:;;HC:;;DO(S'). If S is an 
instantaneous Cauchy surface, then DO(S) = Hand DO(S) 
is a maximal open globally hyperbOlic set. 

From this result and (GH3) , we see that the existence 
of instantaneous Cauchy surfaces is equivalent to the 
existence of maximal open globally hyperbOlic subsets. 
We now restate the existence theorem in terms of 
these subsets. 
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Proposition 2: A strongly causal spacetime is covered 
by its maximal open globally hyperbolic subsets. 

IV. MAXIMAL AND MINIMAL INSTANTANEOUS 
CAUCHY SURFACES 

If one is really interested in the "best possible 
achronal sets" in a spacetime, then the instantaneous 
Cauchy surfaces are not the last word. It is possible 
for one instantaneous Cauchy surface to be a proper 
subset of another. Figure 1 shows a simple example of 
this behavior. The interesting achronal sets, we find, 
are the maximal, Sma., and the minimal, Smin' in­
stantaneous Cauchy surfaces. These sets are easily con­
structed from a given instantaneous Cauchy surface. 

Proposition 3: If AI is a strongly causal spacetime 
and S is an instantaneous Cauchy surface in i'vI, then 

(A) Smln=n",S"" where {S"'} is the set of instantaneous 
Cauchy surfaces contained in S. 

(B) Smax==-I(S), where I(S):==r(S)~I-(S). 

Proof: (A) First we show that II "'S '" is an instantaneous 
Cauchy surface. For each (Y, S",CS and so DO(S",) 
c:;; lJO(S). Since each S'" and S is an instantaneous Cauchy 
surface, DO(S) and DO(S) are maxinnl globally hyper­
bolic sets by Proposition 1. Thus DO(S",) = DO(S) for each 
Q. Consequently, if p EO [JO(S), every timelike curve 
through p must intersect Sa for each Q and so every 
timelike curve through p must intersect (' ~"" It follows 
then that DO(S) C;; DO(n ",S"') and so from the maximality 
of DO(S), DO(S) =DO(n",S). Thus D°(r :",S"') is maXimal, 
and since '\,S'" C S, the set "'S", is achronal. A final 
application of Propos ition 1 completes the proof that 
(1",S", is an instantaneous Cauchy surface. Clearly it is 
the smallest contained in S. 

(B) Since Sis achronal, S,== -I(S). In fact, one finds 
that - I(S) is itself an achronal set. To show this, 
suppose that - I(S) is not achronal and choose two points, 
p« q in - I(S). By strong causality, there exists some 
open globally hyperbolic subset N~r(p)n r(q)~ -I(S). 
By (GHO) and (GH2), there exists some achronal set 
b.S ~N such that N~ DO(b.S). Since b.S(~ - I(S), the set 
S U b.S is achronal. Moreover, DO(S;~ b.S) contains Nand 
so is strictly larger than DO(S). This conclusion leads 
to a contradiction since, by PropOSition 1, DO(S) is 
maximal. Thus - I(S) is an achronal set containing Sand 
so is an instantaneous Cauchy surface. It is not difficult 
to see that - I(S) is the largest achronal set containing 
S (and hence the largest instantaneous Cauchy surface 
containing S); for any extension of - I(S) would contain 
points in I(S) and would not be achronal. 

Some further properties of Smax and Smin are needed 
later. It is useful to state these properties explicitly. 

Proposition 4: If S is an instantaneous Cauchy sur­
face in a strongly causal spacetime ,VI and p E Smin' 
then every time like curve through p intersects DO (Smln)' 

Proof: First note that for every p c: Smin either 
r(p)" DO(S) * c.z> or I-(p)ri DO(S) *c.z>. Otherwise one has 
DO(S)==lP(Smi.)==DO(Smin-{Pt) and Smin-{P} is an in­
stantaneous Cauchy surface, contradicting the mini­
mality of Smi.' 
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If r(p)r'l DO(S) * (/), then for any qC:C r(p) r' DO(S), 
I-(q) 'I r(p) ~ DO(S). Any timelike curve through p must 
intersect I-(q) Ii r(p) and so must intersect DO(S). 
Finally, if 1- (p) IilJO(S) 1'(/), dual arguments complete 
the proof. 

Proposition 5: I(Sm!.l IJ Sm!n =r(DO(S)) IJ 1- (DO(S)) 0 

Proof: If p E: I(Sm!n) L Sm!n' then, for some timelike 
curve y through p, yn Sm!n * (/). By the previous proposi­
tion, yn V(S)1' cpo Thus, either pEr([)O(S)) or p 
EI-(D°(S)), and consequently I(Sm!.)U Sm!n~r(no(S)) 
.~ r (DO (S)) • 

To show the reverse inclusion, suppose p E: r(U(S)). 
Then for some q E DO(S) and some timelike curve y, p 
and q are respectively the future and past end points of 
y. Let y' be any inextendible timelike curve containing 
y, Since y' contains qE:DO(Sm!n)=DO(S), the set}' 
n Sm!n must be nonempty. Since p lies on a timelike 
curve that intersects Sm!.' we have p ::: I(5 m!n) U 5mi •. 
A similar argument can be made for p 'cc r(DO(5)) so that 
r(DO(5)) u r(DO(5)) ~ I(5min) U 5min . 

An immediate consequence of Propositions 3 and 5 is 

for any instantaneous Cauchy surface 5. It is now easy 
to see that if 5 and 5' are equivalent in the sense of 
having the same interior Cauchy development, then 
5 max - Smin =S~ax - S~i.· If Sand S' are equivalent in­
stantaneous Cauchy surfaces, then Smax and S~ax are 
homeomorphic if and only if Sm!n and S~in are homeo­
morphic. We turn to this question in the next section. 

V. REFINEMENT OF THE TOPOLOGY CHANGE 
PROPERTY 

Consider the topology change property (GH4) of 
Cauchy surfaces. In order to apply this result to in­
stantaneous Cauchy surfaces in a straightforward way, 
the previous paper required one of the surfaces to be 
acausal so that it would lie in its interior Cauchy de­
velopment. Here we show how this restriction can be 
removed. 

Theorem 2: If Sand S' are instantaneous Cauchy 
surfaces in a strongly causal spacetime and DO(S) 
= DO(S'), then Smi. is homeomorphic to S~in and Smax is 
homeomorphic to S:""x' 

Proof: From the comments following Proposition 5, it 
is sufficient to prove that Smin is homeomorphic to 
S~in' The property (GH4) cannot be applied directly be­
cause of the possibility that Srn!. and S~!n do not lie 
entirely within DO(S). As in the proofs5-

7 of properties 
(GH2)-(GH4), let y be a congruence of inextendible 
timelike curves and use this congruence to produce a 

map f: Smin - 5~in' 

First, show that the map f is defined on 5 and is one­
to-one and onto 0 For convenience define K : = IP (5). 
It follows from Proposition 4 that any time like curve 
Yp E } through p E Smin enters K and so intersects S~in 
at a point f(P) , Thus, y defines a one-to-one f:Smi. 
- 5~in' Similarly, r defines a one-to-one map g :5~ln 
~ 5m1n such that g= f- 1 so that f is onto 0 
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Next, show that f is continuous by expressing it 
locally as a composition of continuous maps. Choose 
any p E Smin and choose neighborhoods Up of p and U. 
of q : = f(P) with compact closures, Choose a point 
pc yp r Up and a pOiEt (j E::lf> fI U.' From (GH3) ~we ca~ 
pi.ck achronal sets 5 and 5' in K such that p,~ 5, Zj c:c 5' , 
and U(S) = DO(S') = K, The congruence y defines the 
one-t,9-one and onto maps f m!. : Smin - s, 1: S - 5', and 
f:nin :S' ~ S~in so that f= f:n!. 0 fo f ml ., Th~ function f mln 
will be continuous at p if the sequence {q \ ~q = f I (p )} 

n n -mn n 
converges to q whenever the sequence {PJ in Smln con-
verges to p. If any subsequence of (Ii J converges to a 
point q' E: Up but q' * q, then q' E Y and either q' c r((j) 
or q' E J-(q). Suppose q' Er((j). But then r(q) is a 
neighborhood of q' and must contain qn for sufficiently 
large n. One t~en has 1n E r«(j) which contradicts the 
achronality of 50 The same argument holds if q' 'cc 1- ((j) , 
If {il,J contains a subsequence {qn'}~ .11 - Up, then the 
timelike curves of Y which join p , and (jn' must inter­
sect U, As U is compact, the bo~ndary U is also com­
pact and this sequence of intersections will have a 
cluster point q'. One can then apply the previous argu­
ment to contradict the achronality of ~ 0 Thus f m!. is 
continuous 0 This same argument can also be used to 
show that f:nin is continuous. Since (GH4) implies the 
continuity of 7, we have established that f is continuous. 

A time reversal of the preceding argument SllOWS that 
;--1 is also continuous so that f is continuous and open 
and the refore a homeomorphism, 

VI. DISCUSSION 

Proposition 1 establishes a close and reversible con­
nection between instantaneous Cauchy surfaces and 
maximal open globally hyperbOlic sets, Theorem 1 
shows that instantaneous Cauchy surfaces are plentiful 
in most of the spacetimes that one would wish to con­
sider. Proposition 3 connects these instantaneous 
Cauchy surfaces to minimal and maximal instantaneous 
Cauchy surfaces, 

For most purposes, it is the minimal and maximal 
instantaneous Cauchy surfaces that are of interest. 
Propositions 3 -5 spell out a variety of properties of 
these surfaces, From part (B) of Proposition 3, a 
maximal instantaneous Cauchy surface can be thought 
of as a "global instant of time" because it divides 
spacetime into past, present, and future (compact 
partial Cauchy surfaces in a causally continuous space­
time share this same property9). Such a surface is an 
achronal boundary and is therefore a closed, edge less , 
imbedded C1

- three-dimensional submanifold of space­
time-a partial Cauchy surface, Proposition 4 shows 
that a mini.mal instantaneous Cauchy surface has an 
important global property in common with a spacelike 
hypersurface. However, it should be noticed that Sml. 
is not, in general, an acausal or space like surface and 
can have null generators, Proposition 5 and the com­
ments that follow it can be used to deduce the proper­
ties of 5max - 5mi., The property that has been used in 
this paper is the fact that this set depends only on the 
maximal open globally hyperbolic set DO(5) and not on 
the particular instantaneous Cauchy surface S that 
generates it. It is also quite easy to show that Smax 
- Srntn is generated by a congruence of null geodesics 0 
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Theorem 2 requires considerable work to extend 
the property (GH4), but this work is necessary because 
one often prefers to give data on null hypersurfaces 
which need not be contained in their own Cauchy de­
velopments 0 As in the previous paper, 1 the most natural 
way to interpret Theorem 2 is to give various negative 
statements of it. Thus, we find that topology changes 
in maximal instantaneous Cauchy surfaces cannot occur 
through the regular evolution of hyperbolic field equa­
tions. If two such surfaces are not homeomorphic, then 
they must have distinct Cauchy developments and the 
spacetime cannot be globally hyperbolic. 
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Discrete finite nilpotent Lie analogs: New models for 
unified gauge field theory 

Karl Kornacker 

Department of Biophysics. The Ohio State University. Columbus. Ohio 43210 
(Received 2 September 1977) 

To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable 
family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite 
unipotent group G. and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in 
discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though 
some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite 
representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from 
a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group 
theoretic interpretation for hadron colors and flavors. 

I. INTRODUCTION 

Clearly: (a) no experiment can determine whether 
physical space-time is actually discrete or continuous, 
finite or infinite; (b) if phYSical space-time is actually 
discrete, then the use of continuum models may un­
necessarily complicate the theory of extremely micro­
scopic phenomena such as quark confinement; (c) if 
physical space- time is actually finite, then the use of 
unbounded position operators may unnecessarily com­
plicate the quantum dynamical theory of extremely 
macroscopic phenomena such as cosmic evolution, and 
may cause spurious infrared divergence problems; 
(d) systematic theoretical investigation of (b) and (c) 
requires a generalization of quantum field theory which 
is meaningful for some set of discrete finite space­
time models o This paper presents a new mathematical 
approach to problem (d). 

Three difficulties hinder any attempt to reformulate 
quantum field theory in discrete finite form: (1) quanti­
tative measurements are commonly represented by ele­
ments of an infinite number field; (2) no finite number 
field is algebraically closed; (3) there is no known dis­
crete finite analog of the exponential map from simple 
real Lie algebras onto analytic groups. 1 The first two 
difficulties are readily circumventedo The third, how­
ever, prevents the construction of discrete finite gauge 
field theories. For this reaSOn prior studies of discrete 
finite space-time models 2 have contributed little toward 
the generalization of quantum field theory. In this paper 
we solve problem (3) and briefly consider some of the 
unique mathematical advantages which may be obtained 
by reformulating quantum field theories in discrete 
finite formo Specific models utilizing the new finite 
formalism will be discussed elsewhere. 

II. DISCRETE FINITE NILPOTENT LIE ANALOGS 

Some authors have proposed that the finite Galois 
fields GF(p2) of prime characteristic p '" 3 (mod 4) 
should be regarded as discrete finite analogs of the 
complex planeo 2 We cannot accept such a proposal for 
the following reason: 

Proposition I: Let K be a finite field of prime charac­
teristic Po Let I: • K - K satisfy C (0) = 1. Then I: (nx) 

= {( (,»" for all positive integers n only if (' (x) = 1. 

Corollary: It is impossible to construct a nontrivial 
group homomorphism from an additive subgroup of K 
onto a multiplicative subgroup of K. 

Proof: It is known that xl>Y", x for all Xc. I{ and some 
positive integer r, Therefore the given conditions on C 
imply 1 = I: (0) = (- (pYx) = ({ ~,)ltr = {(i:). 

Throughout the remainder of this paper we let R 
denote a finite associative ring with unity 1 R and arbi­
trary fixed prime characteristic P? 3; let C (R) denote 
the center of R; let Zp denote the subring (prime field) 
generated by 1 R ; let Rlx1 denote the ring of polynomials 
in a single algebraically independent indeterminate over 
R; let 1:: R[x 1-R[x 1 denote the truncated exponential 
map defined by {(rp)=1R+l:~=1 <,Qs/s!; let rl/dx: 
R[x 1- R[x 1 denote the R-linear derivation defined by 
d/dx(x) = 1 R; letf!; R[x 1- R[i;1: x - 1; denote a fixed 
unitary R-linear homomorphism; let () ~ R[i;1- R[i; 1 
and exp: R[i; 1- R[~ 1 denote maps defined by the com­
mutative diagrams 

We say that D is faithful if and only if the restricted 
map (): 1;Zpl ~ 1- ZI>[1; 1 is ini ective o We say that the ele­
ment 1) c. erR) is an admissible l'alllC of 1; if and only 
if (i;-TJ)R[i;l is a proper ideal in R[~I. If 1) is an admis­
sible value of 1; in erR) then we let < >": R(~l- R' i;-TJ 
denote the R-linear homomorphism with kernel 
(~- 1)) R(1;l, and let f)ry denote the tangent vector at TJ 
defined as the composite map < )ry of). 

Proposition II uniquely characterizes the unitary R­
linear homomorphism 1(' R[x 1- R[~l which is most 
suitable for use in discrete finite quantum field theory. 

Proposition II: D is faithful if and only if the kernel 
of I( is -,PRiX I. 

Proof (Sketch): If D is faithful then it follows that 
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e-1 rI Zp and ~p = 0; therefore, the kernel of H is 
xl' R[x 1. The converse follows by direct computation. 

Proposition III and its corollary support the choice of 
H according to Proposition II. 

Proposition III: If the kernel of H is xPR[x 1 then the 
following statements are equivalent for 1/ E. C(R): 

10 1/ is an admissible value of ~; 

2. O(exp(1/m = 1/ exp(1/0; 

3. ~=O. 

Corollary: If the kernel of His xi'R[x] and 1/E. C(R) is 
an admissible value of ~ then the restricted map 
exp: 77Z.o[771- z.ohJ defines a group isomorphismjrom 
an additive group of admissible values of ~ onto a 
multiplicative group of automorphisms on l1Z~[111. 

Proof (Sketch): (1) =cO> rjP = <.~Ij" => (3); (3) => (~- 7J)p 
= 0 => (1); (3) =" (2) by direct computation; (2) => 1t~p-t 
= 0 => 0.0-1 (~~p-1) = o~, (3). The conditions given in the 
corollary imply 17' = 0 (by Proposition III). If 2 'c: y ~ P 
is the lowest power of ¢ E. 77zp[171 such that ¢r = 0 then 
d>r-t = (exp(¢) -1a)q:,y-2. It follOWS that exp(¢)=lR if 
and only if q:, = O. The rest of the corollary follows by 
direct computation. 

Proposition N uniquely characterizes the involutive 
automorphism C: Zp[1]]- Zp[lJ1. 

Proposition IV: There exists a unique involutive auto­
morphism C: Zp[171- Zp[171 and (17) =- 17. 

Proof (Sketch): FromryP = 0 it follows that every 
automorphism on Zp[171 is defined by 17 - a17 for some 
nonzero a E. Zp' For an involutive automorphism a2 

=lR*a and therefore a=-lR' 

Throughout the remainder of this paper we adopt the 
following conventions and notation: H is fixed as the 
unique R-linear homomorphism on R[x J with kernel 
xi> R[x 1 ; 1]y 'C C (R) satisfies 17~ = 0 and 1];-1,10 for 3~ r~ P. 

Now consider the countable dense ring of complex 
numbers Z[ipllP] where Z denotes the ring of rational 
integers. Clearly there is a natural homomorphism: 
Z[ip1lP] - Z p[17r] defined by the commutative diagram 

Z[iPlIPl~zpr17pl 

~ ! (mod17;), 

z~[1]r1 

Furthermore the involutive automorphism Cr acting 
on Z.o[1]yl satisfies the commutative diagram 

Z[iplIPl~ Z[ip l /Pj 

1 c r 1 
Zp[17r1--Zp[1]yJ, 

where * denotes ordinary complex conjugation. There­
fore, we call17r the (p, r) image of ipllP, and identify 
C r as the (p, r) analog of complex conjugation. 

In view of these observations we identify 17;Z,,(1);J, 
the set of all "real" (invariant under C r) admissible 
values of ~ in Z.o [11,.] , as the (p, r) analog oj the real 
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axis. The (p, r) analog of the complex plane is then the 
1);Z" [ 1);1 module generated by {1, 1) .. }, or equivalently 
77;Z,,[1] .. l. It follows that 1/~Zp[1/;l is the (p,r) analog oj 
the imaginary axis. 

Every element of the multiplicative unitary group 
exp(1/;Zp[1J;]) can be written as (exp(1/,.O)~ for some 
d> \:;.1/;Zp[1);J. Also 1]r=Oo(exp(1)rO), so we may regard 
1)r as the infinitesimal generator of exp(17;Z,[1/;]). It 
follows that the Lie algebra of exp (1);Z~[ 1/;]) is isomor­
phic to 7J~Z~(1)n Therefore we regard exp(1);Z,[17;]) as 
the (p, r) analog oj U(l). 

The following definitions together with proposition V 
generalize the preceding constructions to include (p, r) 
analogs of noncommutative real Lie algebras. 

Definition: Let L be an abstract real Ill-dimensional 
Lie ~lgebra with basis {A~}T chosen so that all structure 
constants of i are integers. Such a basis for L always 
exists if f is compact, but may also exist when i is 
noncompact. Let L denote the Lie ring generated by 
{Ak}T. Let L[1]p] denote the tensor product Zp(1)p]@ L with 
Lie product defined by [<1>@ A, d>'@ A'l = ¢q:,'@ [A, A'l. We 
call the finite nilpotent Lie algebra 1/;L[ 11;1 
= 1) ;z p[ 1];10 L the abstract P analog oj f. 

De/inition: Let Msf 1/r 1 denote the semilocal ring of 
matrices of degree s over the loca13 commutative ring 
ZI>(1)r10 Let Ps: L(7)pl- M8[1).o1 be a zphpl-linear repre­
sentation such that Ps(l R @ [A, A'l) = Ps(l R@ A) p,,(l R@ A') 
- Ps(l R6' A') Ps(lRB A) for all A, A' c L. Let p~r): 
L [1/p 1 - Ms[ 1)r 1 denote the representation defined by the 
commutative diagram 

Then we call p;Y) (1);L[lJ;D a (p, Y) analog of i. Note 
that the value of the cutoff paramctcr r is determined 
by the choice of representation. 

Proposition V: Let R = Ms(1)r 10 Then the image of 
exp op;r): 1);L[1);l- R is a finite unipotent group whose 
Lie algebra is isomorphic to p~r) (1];L[1/;lL 

Proo j (Sketc h): The Baker- Campbell- Hausdorff 
theorem4 assures that the specified image is a unipotent 
group. The rest of the proposition is proved by para­
phrasing standard arguments. 5 

The remainder of this section deals with representa­
tion theory. We identify Ms[1/r1 with the ring of endo­
morphisms on afrce zp(1)r1 module F(r, s) whose basis 
contains 5 elements. We say that a subset T of .u.[1/ .. 1 

is reducible over F(r,s) if and only if F(r,s) contains 
a free proper submodule F(r, s'), l'~ S' < s, which is 
invariant under every element of T; otherwise we say 
that T is irreducible over F(r, s). Clearly the reduci­
bility of T is independent of the choice of F(r,s). For 
s=m we choose F(p,m) to be the free z,'[1/p1 module 
with basis {I R @ Ak}T and let Pm denote the regular 
(adjoint) representation defined by Pm(lR @Ak): F(p, 1/1) 
--F(p,III); lR'@Ak' -lR@[A.,Ak,lo 
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Proposition VI: Let Zp 0 L be a simple non-Abelian 
Lie algebra. Then 

(1) Pm is faithful; 

(2) p:)(1J;L[1J;]) is irreducible if and only if r? 5; 

(3) exp op:) (1J;L[1J;D is isomorphic to a direct product 
of 11/ inequivalent (p, r) analogs of U (1) if and only if 
r == 4, 

Proof (Sketch): (1) and (2) are elementary conse­
quences of the definitions. For r == 4 there exists a Lie 
isomorphism p~4) ~ L::'1 (J~ (direct) where the skew­
Hermitian singlet representation Uk; L[1Jp]-1IJ1[1J41 is 
defined by Uk (1) 0 Ak,)=okk,1>1J,(mod1J!). If 1'==3 then 
I);Z,[ 1Jr 1 contains no non- zero skew- Hermitian elements, 
while if r? 5 then VI. 2 precludes a decomposition of 
p:), 

Remark: It is well known that if L is simple then 
Z,0 L is simple for all p sufficiently large. 

Finally, let L' be a non- Abelian Lie subring of L. 
Let F(p, m') denote the free submodule of F(p, m) 
spanned by 11<0 L'. Let G(p,m') denote the symmetry 
group of F(p, m'), that is, the subgroup of Lie auto­
morphisms on F(p, m) which leave F(p, m') invariant. 
Clearly G(p, m') contains a subgroup of inner auto­
morphisms isomorphic to exp 0 Pm (1J;L' [1J;1). The group 
G(p, 111') may be regarded as the spontaneously broken 
symmetry group corresponding to the reduced skew­
Hermitian Abelian multiplet representation p~~): L[1Jp) 
- jlm'[1)4] which is injective on 1R,Si L'. No comparable 
model for spontaneously broken symmetries is possible 
if representation theory is limited to the representa­
tions of t, because simple non-Abelian Lie algebras 
cannot have nontrivial Abelian representations. 

III. APPLICATIONS TO UNIFIED GAUGE FIELD THEORY 

If the observed elementary hadrons are classified 
into multiplets by standard group theoretic methods, 
then it appears that only a small number of mathemati­
cally possible multiplets are realized in nature. 6 This 
confinement phenomenon, which includes quark confine­
ment, is now generally thought to signify that all ob­
served hadrons correspond to (colorless, flavored) 
SU(n)co!or singlets for some n? 3. The consensus is that 
color confinement will eventually be deduced from a 
unified gauge field theory carrying exact (not spon­
taneously broken) SU(n)cotor symmetry. 7 Little pro­
gress on this problem has been made, however, be­
cause there is no known method for constructing 
bounded solutions to quantum field equations which are 
invariant under an exact non-Abelian gauge group. 
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Some suggestive results have been obtained with the aid 
of discrete (infinite) lattice models using finite-differ­
ence methods, 8 but such approaches leave infrared 
divergence problems unresolved. 

Reformulation of exact color gauge field theories in 
discrete finite form, utilizing finite nilpotent Lie 
analogs, should produce several unique mathematical 
advantages: first, and perhaps most important, all 
divergence problems should be eliminated without the 
need for special renormalization procedures; second, 
all cutoffs should enter through representation theory 
without the need for special approximations; third, the 
singlet representations of the abstract non-Abelian 
color gauge group should be naturally distinguished, 
possibly suggesting a new unified group theoretic inter­
pretation for color and flavor; and fourth, there should 
be a natural hierarchy of spontaneously broken gauge 
symmetries corresponding to the symmetry subgroups 
of the full automorphism group for the abstract color 
gauge group, possibly suggesting a new unified group 
theoretic interpretation for exact and spontaneously 
broken gauge symmetries (cf. Ref. 9). These observa­
tions indicate that further studies and applications of 
finite nilpotent Lie analogs may accelerate progress 
toward the solution of fundamental problems in quantum 
field theory 0 
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one-speed or constant cross section model of the neutron­
transport equation 
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The inverse problem for a half-space is solved (for isotropic scattering) to yield results that suggest an 
idealized experiment that could be used to evaluate in a new way the validity of the one-speed or constant 
cross section model of the neutron-transport equation. 

INTRODUCTION 

Inverse problems in the theory of neutron diffusion 
have been discussed in recent years for finite1,2 and 
infinite media. 3-5 Here we would like to investigate 
the half-space inverse problem for the one-speed or 
constant cross section model of the neutron-transport 
equa tion and to show how the established results sug­
gest an experiment that could be used to evaluate the 
isotropic-scattering model of the neutron-transport 
equation. 

ANALYSIS 

We consider the neutron-transport equation 

11 -/; ~I(X, 11)+ ,j}{x, 11) = ¥J 1 JJ(x, 11') dll', 

-1 

(1) 

where iHx, 11) is the neutron angular flux, x is the posi­
tion variable measured in mean-free-paths, 11 is the 
direction cosine, and 

(2) 

is the mean number of secondary neutrons per colli­
sion. Traditionally for c < 1, we seek to solve Eq. (1) 
in a semi-infinite half- space such that 

(3a) 

and 

(3b) 

where F(Il) is considered given. Here we consider that 
F(Il) is specified, that i/!(O, - 11), 11 > 0, can be mea­
sured experimentally, and that we wish to determine 
the mean number of secondaries c. 

We know from the work of Chandrasekhar6 that the 
exit flux can be computed from 

c Jl dx ~'(0,-Il)=-2H(Il) H(x)F(x)x--, 11>0, 
x+1l 

o 

where H(Il) satisfies 

H(Il) = 1 + -2c 
jJ.H(jJ.) r 1 H(x) ~ • 

10 X+jJ. 

It is clear that we cannot readily solve Eq. (4) for c 

(4) 

(5) 

a) Permanent address: Nuclear Engineering Department, N. C. 
State University, Raleigh, N.C. 27607. 

since H(jJ.) is a function of c. Moments of the exit dis­
tribution can be found by multiplying Eq. (4) by jJ.O< and 
integrating over /1 0 For example, after using Eq. (5), 
we can write 

i/!o == 11 F(x)[H(x) - l]dx, (6a) o 

and 

where 

(7a) 

and 

(7b) 

If we consider the special case of an isotropic incident 
flux, F(jJ.) == 1, then the resulting version of Eq. (6a) 
yields 

~160)=Ho-l=(2/c)(I-"-I- c)-t, (8) 

which can be solved for c to yield 

_ 4i/!~O) 
c- (JJ60) + 1]2. (9) 

Here we use 

JJ~~) == 101 i/!(~) (0, - /1) 11 O! d/1, (10) 

where JJ(E) (x, /1) denotes the solution of Eq. (1) corre­
sponding to F(/1) == Il~. 

If we now consider F(/1) = IJ., 
can be used with the identity6 

vl- C Hz + (c/4)H1 =~ 

to deduce 

_ 4i/!;1) 
c - TJJ61l + iF . 

then Eqs. (6a) and (6b) 

(11) 

(12) 

In a similar manner Eqs. (6a) and (6c) and the identity1 

v'l-=C H4 - (c/2)(-~H~ - H3Hj) ==t (13) 

can be used to establish 

41//2) 
c - 2 

- (i/!~2) +H' (14) 
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With the aid of Busbridge's identity? concerning mo­
ments of the H function, 

,;y-:::-c H 2o< + (c/4) W1H 2o< -I - H 2H 2o<_2 + ... + H 2o< _IH 1) 

1 
20 + 1 ' 

we can generalize Eqs. (9), (12), and (14) to obtain 

4~'(~) 

c = Tz/!~B) + (~+ 1)-1]2' tJ == 0,1,2,3, .... 

(15) 

(16) 

Generally when we apply Eq. (1) to physical problems 
we consider c to be a constant and thus clearly not a 
function of the boundary conditions. It thus seems feasi­
ble that the manner in which c, as computed from Eq. 
(16) and the experimentally measured z/!(B) (0, -11), 
varies with tJ would be a reasonable measure of the 
accuracy with which Eq. (1) represents the given physi­
cal problem. It also seems feasible that the multigroup 
version of Eq. (16) would offer a definition of the trans­
fer cross sections alternative to the traditional one. 
The finite-slab inverse problem solved in Ref. 2 for the 
multigroup model could serve a similar purpose. 
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Derivations are given of the effect of Lorentz boosts on physical particle and ghost states in quantum 
electrodynamics. It is shown that the photon helicity is an invariant even though, in general, Lorentz 
boosts transform the transverse, longitudinal, and timelike components of the vector potential into each 
other. A similar calculation is made for an Abelian gauge theory in which the particles have dynamical 
mass. 

I. INTRODUCTION 
Gauge theories in manifestly covariant formulations 

generate particle spectra that include ghosts as well 
as observable particles. Some ghost particles, such 
as the scalar ghost in quantum electrodynamics (qed), 
are excluded from the set of observable states by 
subsidiary conditions, 1 Others, like the zero helicity 
(longitudinal) ghost in qed, satisfy the appropriate 
subsidiary condition and are members of the set of 
allowed states, but have vanishing norms and there­
fore are still unobservable. 

Under Lorentz transformations particle states are 
transformed into different particle states. This 
corresponds to the fact that an observation, carried 
out in an inertial reference frame F, which detects 
a particle with parameters P, would in general detect 
a particle with different parameters, pI, when made 
in a different inertial frame F', Some aspects of 
Lorentz transformations, when carried out on parti­
cle states in gauge theories, become involved with 
the indefinite metric of the underlying Hilbert space and 
warrant special attention. For example, a Lorentz 
boost applied to a transversely polarized photon 
which is propagating in a direction not parallel to 
the boost, transforms the transverse photon partially 
into nontransverse ghost states, The fact that the pho­
ton mass is zero makes it necessary that the photon 
helicity be unaffected by the Lorentz boost, even 
though there is mixing between transverse and 
nontransverse states. 2 It is only in an indefinite 
metric space that these apparently inconsistent condi­
tions can be reconciled. Consistency also requires 
that photon states that obey the subsidiary condition 
in one inertial frame do so in all inertial frames, 
and that this important condition for the covariance 
of the theory is not threatened by the indefinite metric 
and the mixing of transverse photons and ghosts in 
Lorentz transformations 0 3 

For theories that can be formulated in a positive 
metric space, group theoretic methods can and have 
been used to study Lorentz transformations of 
particle states. 4 But within a positive metric space 
the transformations among the transverse and non-

transverse photon states cannot be treated consistently 0 

In order to accomodate the requirements of an 
indefinite metric space, we have constructed the 
generators that effect the Lorentz boost and explicitly 
calculated the transformed particle operators, in­
cluding their ghost as well as their observable compo­
nents, In this paper we will report on this calculation, 
We will also include a discussion of the mixing among 
the + 1, 0, and - 1 helicity states of a massive Abelian 
gauge theory when a Lorentz transformation is carried 
ouL 

Although Lorentz transformations on observable 
and ghost states in gauge theories do not present any 
extraordinary mathematical difficulties, they are not 
explicitly carried out in texts, nor, to our knowledge, 
anywhere else in the literature" We address ourselves 
to this question in this paper, partly because the 
topic is of interest in its own right. The subject is also 
of special interest because it can be useful in identi­
fying the particle spectra of gauge theories with 
spontaneously broken symmetries, Previously5 we 
have discussed a model that incorporates spontaneous 
symmetry breaking and, in a later work, we hope to 
identify the particle spectrum of that model unambi­
guously by using the techniques developed here to 
examine how the relevant massive particles transform 
among themselves under a Lorentz transformation. 

II. LORENTZ TRANSFORMATION IN 
QUANTUM ELECTRODYNAMICS 

The Lagrangian for the free Maxwell field in the 
Feynman gauge is6 

L =- tFILvF "V - C(x)o"A" + iC 2 (x) 

with F"v=oILAv-o.,AlLo C(x) is a Lagrange multiplier 
field which keeps IT4 , the momentum conjugate to A 4 , 

from vanishing identically, The Euler-Lagrange 
equations generated by L are 

and 

(1) 

(2) 

(3) 
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and the canonical momenta adjoint to A". are 

II j =ooA j -io j A4 

and 

II4 = iGo 

The Lorentz boost generator is given by 

M4j =i I dxhoP j - x jH} 

- J dx{[a oA11Aj- [ooA j ]A4 }, 

where (lj is the momentum density 

Pj =- II"ajA" 

and H is the Hamiltonian density 

H = iII" II" + tF jkF jk 

+i[IIjojAC II 1 oj A j ]- o)AijA j ]. 

The last term on the right-hand side of Eq, (8) is a 
total divergence which makes no contribution to the 
Hamiltonian H = J dxH but does make an important 
contribution to M4j [Eq. (6)]0 Unless this total diver­
gence is included in H, the A" and the F "v will not 

(4) 

(5) 

(6) 

(7) 

(8) 

all transform properly among themselves like compo­
nents of vectors and antisymmetric tensors respec­
tively. The decomposition of A" and II" into particle 
creation and annihilation operators proceeds as in 
Ref. 7, except that we now choose invariant integration 
over momentum space variables. We express A" as 

( ) - 1 J dk t~). ( ) 
AI' X - (271)3/2 2ko ).=1 E " k 

x [A).(k) exp(ik"x,,) + A~(k) exp(- ik"x,,)] 

with k o= Ik I, where A).(k) and Ai(k) obey the commu­
tation rule 

[A).(k), At,(k')]==:2ko1\).)!1\ (k-k'), 

Here €! (k) = Ii ". 4 and [ilk) indicates a set of unit 3-
vectors of which f(3)(k) =k/ Ik I; f(l)(k) and E'(2)(k) are 
two unit vectors that, together with ~3)(k) form an 
orthogonal triad. We express III' as 

fl,,(x)= (271~372 f~ {t;U';(k) 

x [-A).(k) exp(ik"x,,) + At(k) exp(- ik"x,,)] 

+ [i€1(k) +E'~(k)][- (A 3(k) + iA4 (k)) exp(ik"x,,) 

(9) 

(10) 

The space-time function exp(ikj.lx,,) (with k"x" 
=k' x - koXo) includes the explicit c-number time 
dependence characteristic of free fields, We exclUde 
interactions between photons and charged particles 
because these interactions have little to do with the 
question of how single particle photon states appear 
in different inertial frames. Moreover, the definition 
of single particle states is very much complicated by 
the persistent effects of charged particle-photon 
interactions, and this too has motivated us to omit 
these effects in this work, 

The operators that describe the scalar and the Zero­
helicity ghosts are 
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AQ(k) = (1/ ,J2) [A 3 (k) + iA4 (k)], (lla) 

AR(k) = (1/ J2) [A3(k) - iA4 (k)], (llb) 

and their adjoints are 

A~(k) = (1/ J2)fAi(k) - iA!(k)] (12a) 

and 

A1(k) = (1/ PHAi(k) + iA!(k)]. (12b) 

The t adjoint denotes the Hermitian adjoint, which, 
in an indefinite metric space, is not the representa­
tion-independent adjoint that relates self-adjointedness 
of an operator with the reality of its eigenvalues, 
The adjointing operation that satisfies this criterion is 
the * adjoint, for which" A~=A1 and A~ =Ab, The 
Gupta-Bleuler subsidiary condition, 

?"A~+) 111)=0, (13) 

translates into the momentum space equation 

AQ(k) I 11):= 0, (14) 

and the photon state A~ 10) represents the scalar 
photon forbidden by the subsidiary condition, The 
state A~ 10) represents the zero-helicity photon, and 
it satisfies the subsidiary condition [Eq. (14)], Since 
(ARIA~)=O and (AQIA~)=O, both the forbidden scalar 
photon state and the zero-helicity photon state are 
ghosts, In a superposition of allowed states, 1, e. , 
those obeying Eq, (14), the zero-helicity components 
are not observable since they have zero norm and 
therefore zero probability of being detected, 

Under a Lorentz transformation the vector potential 
transforms according to 

When the transformation is infinitessimal, A 1'" is 
given by 

(15) 

A"v=oj.lv+w"v (16) 

and in the case of a pure Lorentz boost w4j = - iOP j 

= - W j4, while all other components of w"v vanish; 
OP j = 1\v / c, where Ov is the infinitessimal velocity 
which the origin of the primed inertial frame has 
in the unprimed one. The infinitessimal change in 
A,,(x), M,,(x)=A~(x)-A,,(x) is given by 

M,,(x) =6A,,(x) + (Oxv)o~,,(x). (17) 

Here 6A,,(x) is the part of the transformation that 
"scrambles" the vector components, and will be 
written as 

~A" (x) = (2 1)372 J2
dk
k d:) OE'~ (k) 71 0),=1 

4 

x [A).(k) exp(ik".x,,) + At(k) exp(- ik".xj.l)] + ~E;(k) 
A=l 

In OA".(x) the "scrambling" of the components of A" 
is represented by the first order change in the mo­
mentum space photon operators, and in the unit vectors 
that mark the direction of propagation and the two 
transverse polarization directions. (Oxv)il~I' (x) 
transforms the space-time point in the argument 
of AI' (x), 
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In evaluating 6A~(x) we need to calculate the first 
order variations of~(k). In order to permit a consistent 
interpretation of A 3 (k) and Ai(k) as the annihilation 
and creation operators, respectively, for photons 
polarized in the propagation direction, and Al (k), 
A 2 (k) and Ai(k) and A~(k) as the appropriate operators 
for the transversely polarized photons, we must 
transform the three unit polarization vectors t(l) (k), 
f (2 )(k), and E'(3)(k) so that they remain an orthonormal 
triad in all inertial frames. A representation that 
satisfied these requirements is f(3) (k) =k/ 1 k 1 and 
E(l )(k) = e(1 )(k)/ 1 e1 (k) I, {(2 )(k) = e(2)(k)/ 1 e(2)(k) I, where 
ell) and e1 2

) are the entries in a second rank antisym­
metric tensor t~v with 112 = eJ2), t13 = - e~2), t23 = e12 ), 

114 =: - ieIl), t24 =: - ie~l), and t34 = - ie11
) 0 Lorentz 

transformation of the tensor t~. produces the following 
first order variations in the polarization unit vectors: 

oE"(3)(k)=_ (l/v)[v- (v'k)k]6({3), (19a) 

of (1 )(k) = _ (l/v) [€(2) x V _ k 0 V fell Ja(J3l, (19b) 

and 

oE" (2)(k) = (1/ v) [t (1) X V + k 0 v E (2)]O(j3). 

USe of Eqs. (19) in representing the variation OA" 
leads to 

6A(-l- O{3 Jdk ([E"(1)(V.E'(1»+E'(Z)(Vof(2»] 
A - - '('2iT)372 2 k 0 

X fA3 (k) exp(i1? .. x ,J + A~(k) exp(- ik ... x,,) j 

(19c) 

- f (3) [t (1) • V (AI (k) exp(ik "x .. ) + Ai(k) exp(- ik"x ~) 

+E'(2). V (A 2 (k) exp(ik .. x ,.) + A~(k) exp(- ik "x,,»)]} 

1, dk fA(1) [ _ t ) 
+ (27T)3/2 J2ko lE M 1(k)exp(1.k"x,,)+1iA1 (k 

x exp(- ik~x .. ) 1 +f(2) [M2(k) exp(ik "x ,,) + 1iA~(k) 

x exp(- ik"x ,,) 1 + f(3) [0A3 (k) exp(ik"x,,) + M~(k) 

Xexp(- ik"x,,)]} (20a) 

and 

- 1 dk 
M 4 (x) = (27T)3/2 J 2k

n 
[oA4 (k) exp(ik"x,,) 

+ M!(k)exp(- ik~x,J]. 

In the remainder of this section we will use Eqs. 
(20), together with ax)3vA" (x) and the expression 

(20b) 

oA"(x)=-iw",B[M,,B' A,,(xlj. (21) 

which we will substitute into Eq 0 (17) in order to find 
the explicit form of oAl.(k) land 1iA~(k)], the change in 
A~(k) [and At(k) J that the Lorentz boost produces. 
6x"0"A,, (x) can be written 

• () i6{3, J dk {[ A J~A~ 
uXvcv A" x =: (21T)37z 2 x j - xok j ~E ... (k) 

x [Al.(k) exp(ik .. x,,) - At(k) exp(- ik"x,,)l}. 

(22) 

We can replace x j exp(ik"x ,,) in Eq. (22) by an integra­
tion by parts in momentum space, Modulo integration 
by parts we have 
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the last term on the right-hand side of Eq. (23) 
stems from the mass shell constraint k jk j =: k~ in 
exp(ik"x~). 

If this substitution is made in Eq. (22), we have 

o{3,dk 4 {[of~(k) 
ovx"A"(xo) = - (27T)·b J"2?2 ~ Al.(k) 

A).()OAl.(k)] (. ) 
+E" k -a;;; exp l.k"x" 

+raE~(k) At(k)+AX(k) oAi(k)] 
ok j A} E~ okj 

xexp(- ik .. x .. ) • 

cAl' (x) is evaluated by using the commutator in Eq. 
(21) and the expressions in Eqs. (6)-(8), and by 
making use of the identity given in Eq. (23). This 
leads to 

() ~{3, Jdk~Al.{[ cAx 
OA" x = - (27T)h2 2ko 8. E" - ko a;;; - ko 

t AX aE~', -t Al.All· A l.. ll' ] 
~, ... :~ .... ok) A).. +t

X
.:1(E

4Ej Ax.-Ej E4 A . ..,) 

xexp(ik~x,,) + [- ko oAt k ~ -" oE'~. At 
-- ouEs;.' ')./ 
3k j l.;"':1 a k j 

+i t(f!E;'Ai.-E'i~·At.)JeXP(- ik"x,,)(. 
)'':1 f 

The resulting expressions for oAt (k) are 

OAI(k) = 'VT'f. o{3fU)(k)' vA~(k) 

OA~(k) = ..fl. O{3E (2)(k)' vA~(k) 

OA~(k) =0{3E'(3)(k) 0 vA1(k) 

0A~(k)=-0{3[t(3).vA~(k)+ ..fl.f(l)· vAT 

+ -I2E(2) , VAil 

(23) 

(24) 

(25) 

(26a) 

(26b) 

(26c) 

(26d) 

and the corresponding adjoint equations for the annihila­
tion operators, 

M 1 (k) = "T2"6{3€(l)(k) 0 vAQ(k), 

M 2(k) = ..fl. 613 E (2)(k) • vAQ(k), 

MQ(k) = 0{3€(3)(k)' VAQ(k), 

MR(k) =-oJ3[f(3) , vA
R 

+ j"UCl). VAl 

+ -I2f(2). VA2l. 

(26e) 

(26f) 

(26g) 

(26h) 

To translate Eqs. (26) into Lorentz transformations 
on helictty states, we apply the boosts to creation 
operators acting on the vacuum, and define 
At.) = (Ai + iAD!.fl, Ai_) =:: (Ai - iA~)/ fl, as well as 
t(+l == (f (ll + iE 2)/..fl., and € (-) = (E0l _ i{ (21)/..fl.. We define 

ik, (+»=At)(k) 10), (27a) 

Ik, (-»=Ai.)(k) 10), (27b) 

Ik, R)=A1(k) \0), (27c) 

and 

(27d) 
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The transformed states, to first order in o{3, 

Ik, (+)' = Ik, (+)) + -/2 o{3€'(·)(k) 0 v Ik, R), 

are 

Ik, (-)' = Ik, (-) + ,}2 op€, (-)(k) 0 l' Ik, H), 

Ik, R)'=ll +o{3f(3)(k), 1')lk, R), 

Ik, O)'=fl-o{3f(3), 1')lk, Q) 

+ o13[t(·)· IJ [k, -) +f'(-), v Ik, +)]. 

(28a) 

(28b) 

(28c) 

(28d) 
Equations (28a) and (28b) indicate that under Lorentz 
transformation the photon's helicity is invarianL If 
the helicity is + 1 or - 1, then the generation of Ik, R) 
components in the transformed wavefunction leaves 
the helicity unaffected because ik, R) is a zero norm 
ghost which is orthogonal to every other state vector 
in the physical subspace, and, in particular, is 
orthogonal to all Ik, (+)) and Ik, (-)) photon states. It 
is not orthogonal to Ik, Q) states, but these latter are 
forbidden by the subsidiary condition, and inspection 
of Eqs. (28) demonstrates that they are never genera­
ted by Lorentz transformations of states allowed by the 
subsidiary condition. The helicity of [k, (+ ))' [and 
Ik, (-)'] is therefore trivially identical to that of Ik, (+)) 
[and 1 k, (-) J respectively. It is the vanishing norm of 
the Ik, R) 1 state in the indefinite metric space that 
allows the photon's helicity to be invariant in a Lorentz 
transformation even though a Lorentz boost applied 
to a transverse state does generate nontransverse 
components. Similarly Eq, (28c) shows that the 
Ik, R) ghost remains the pure Ik, R) ghost state in 
a Lorentz transformation and neither develops 
transverse nor forbidden Ik, (~) components> Following 
the usual nomenclature, we have referred to the 
ik, R) ghost as the zero-helicity photon, but properly 
speaking it has no helicity at all because its vanishing 
norm does not allow the definition of a helicity, nor 
any other expectation valueo The Lorentz transforma­
tion of the forbidden ghost, Ik, Q), is given for com­
pleteness, but has no physical Significance since 
Ik, Q) states are not admitted into the spectrum of 
observable stateso Since the Ik, Q) ghost is never 
generated by a Lorentz transformation of a transverse 
or zero-helicity ghost, and, equivalently, since the 
Lorentz transform of AQ(k) only involves further 
AQ(k) components, the subsidiary condition is easily 
explicitly shown to be invariant. 

III. GAUGE THEORIES WITH MASSIVE PARTICLES 

In this section we will apply Lorentz bo( sts to the 
particle states of a massive gauge theory, This theory 
has previously been discussed by one of us" (KH), It 
results in a spin one massive boson, but it is a gauge 
theory and is formulated with a Gupta-Bleuler sub­
sidiary condition in an indefinite metric space. It is 
therefore different from the Proca theory of massive 
vector bosons. Jo 

The Lagrangian for this theory is 

and the Euler Lagrange equations are 

ojJ.F jJ.v - ;112Wv + dvG =0 0 
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(29) 

(30) 

The Hamiltonian density is 

H = ~IT~ + ~;112w;. + tFjkFjk + i[n ja jW4 

- Tl 4c jW j ] - C JWjc k Wk)o (31) 

Except for the case that in this section Ro denotes 
r Ik /2 + }\12J1 /2, the momentum space decomposition of 
W" exactly parallels that of A" in Eqo (9), and the 
same unit polarization vectors are used in this case, 
The decomposition of IT" is given by 

x f- AA(k) exp(ikjJ.x,,) + A~(k) exp(- ikiLx,J] 

-~ f Et (k) A 3 (k) - E~ (k)A4 (k)] exp(ikiLx iLl 
'0 

Ik\ 
+ To [E~ (k)A;(k) - (~(k)A~(k)] exp(- ik"x,,)}, (32) 

The massive boson creation and annihilation opera­
tors are more complicated than the photon operators 
in qedo They are discussed extensively in Sec. II of 
Ref. 9, and the relevant ones will be defined here, 
Ak(k) is given by 

Ak(k) = j~~) fAi(k) + i ~,~ I A! (k)], (33) 

where N(!?) = /2"?o[lki2+1?~rl/2 and the properly 
normalized zero-helicity state is given by 

(34) 

Equation (34) marks one of the most significant differ­
ences between this massive p;auge theory and qed" 

The state Ik, R) is not a zero-norm ghost, but 
instead is a properly normalized state with (k, R* Ik'R) 
= 0kk" The helicities of the massive gauge particles 
therefore are not invariant under a Lorentz boost, 
but transform among themselves, 

The massive boson forbidden by the subsidiary 
condition is A~(k) 10), 

where 

Ab(k) = '~~) [I~I A~ (k)- iA~(k)J. (35) 

The tensor composed of the components c (1) and e (2) 

in this case is t12=(lkl/ko)e~2), /13 =- (lkll/?o)d2
), 

123 =([kl/ko)eF), t14=-ieill, l24=-ie~l), and t34 
= - ie;J). The resulting expressions for the variations 
Of are 

Of (S)(k) = - -2zr -.! [v - (v ' k)k] o{3 (36a) 
Ik I l' . , 

and 

Of(2)(k)=-~ -.! fE(l)X v + (k ,V)f(2))013. 
Ikl l' 

(36c) 

Lorentz boosts of the massive boson states are given 
by 

(37a) 

and 
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5Ik,R)=-5i3(~11 (fc+).vlk,(_) 

+E'c-), V Ik, (+)], (37b) 

and in this case describe the transformations among 
the + 1, - 1, and 0 helicity states, As iV/Ilk I becomes 
smaller, the amount of mixing of + 1, 0, and -1 
helicities in a Lorentz transformation decreases, This 
is consistent with the fact that there is no mixing at 
all in the case of massless photons, However, in the 
process of establishing the normalized state vectors 
for massive particle states, division by both AI and 
Ik I may be equated to zero in Eq. (37) with safety 0 
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Solution of a second-order integro-differential equation 
which occurs in laser modelocking8
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We solve the following integro---differential equation for the eigenfunction u (x): 

su(x)=! d 2/dx 2-(1-6sech2{x)1l u{x) -EJoooou{x')sech{x')dx' (l+v2d 2/dx 2)sech{x), 
where s is the eigenvalue and E and v are arbitrary parameters which need not be small. This equation 
occurs in laser modelocking theory in the analysis of pulse stability, and s is proportional to the rate of 
growth of perturbations. We expand the eigenfunction u (x) in terms of a convenient basis set A(x, k) 
satisfying 

- k 2A(x,k) = [d 2/dx 2+6sech2(x)]A{x,k). 
We find two discrete eigenfunctions uo{x) and Ul(X) and a continuum u{x,s). We find that the lowest 
eigenvalue So(E) is -3 at E = 0 for finite or zero v, and that the point where So = 0 the parameters E 
and v obey 

E = 2/(1- v2
). 

This is the zero growth point at which no eigenfunction u (x) has a positive eigenvalue s. 

I. INTRODUCTION 

In this paper we review the solution of a second order 
integro-differential eigenvalue equation which occurs 
in the theory of saturable absorber laser modelocking. 1 

The mode locking of a laser occurs via temporal modula­
tion of the electric field within the laser cavity to pro­
duce short pulses of light. In passive modelocking, the 
modulating element can be a fast saturable absorber 
which sharpens the pulse upon each passage through it 
by absorbing the wings of the pulse preferentially to 
the pulse maximum (the pulse maximum bleaches the 
absorber and sees less loss than the wings), The active 
gain medium has only a finite bandwidth which broadens 
the pulse upon each transit. A steady state operating 
condition is reached when the nonlinearity of the ab­
sorber balances the dispersion due to limited band­
width in the gain medium. 

The modelocking equations have been solved in closed 
form to yield pulse solutions and operating parameters 
for modelocked laser systems. The stability of the 
steady state pulses was a question of some interest be­
cause experimentally passively modelocked systems 
were often unstable, and before the recent theoretical 
work there were no guidelines by which one could de­
sign a stable system from the basic system parameters, 
The present paper is motivated by the stability 
analysis, 

The linearized equation of motion for perturbations 
of the steady state pulse can be reduced in the case of 
well-separated pulses to the following integro-differ­
ential eigenvalue equation, 

a)Work performed in part under the auspices of the U. S. 
Department of Energy. Contract No. W-7405-Eng-48. 

b)Work at MIT supported in part by the Fannie & John Hertz 
Foundation. 

SlI(') 

= (t; -[ 1 - 6 sech2(x) l) II(X) - E f: u(\"') sech(x') dx' 

( 
(P ) 

X 1 + /J
2([Xl sech(x), (1) 

where S is the eigenvalue and E and /J are arbitrary 
parameters which need not be small. The different 
terms in (1) can be assigned phySical Significance, the 
eigenvalue s gives the growth rate of perturbations from 
pass to pass, and therefore conditions under which 5 

cannot be positive are of interest. The second deriva­
tive is a "diffusive" operator due to the limited band­
width in frequency of the active gain medium and the 
"potential well" term is the normalized loss seen by 
the perturbation. The integral term is due to the addi­
tional saturation of the gain medium which is caused by 
the perturbation. 

In the following solution of (1), no restrictions are 
placed on E and the final results are valid even for com­
plex E. The method of solution is to expand the eigen­
functions II(X) in terms of an orthonormal set of func­
tions satisfying the potential well eigenvalue equation 
(a degenerate Lame equation) 

_ /,2 A(x k) = ~ + 6 sech2x A(x, kl. ( 
(P ) 

, dx" 
(2) 

The eigenfunctions u(x) reduce to A(x,!?) when the pa­
rameter E is zero in which case there are two discrete 
eigenfunctions and a continuum of eigenfunctions. As E 

becomes nonzero, one finds that (1) retains two eigen­
functions and a continuum, and that of the spectra of 
eigenvalues, only the lowest one varies with E and /J. 

In Sec. II we present the solutions to (2) and in the 
following two sections we solve for the eigenfunctions 
of (1) in the special case of /J equal to zero. This is 
done for the sake of clarity, since in this case the equa­
tions are simpler and hence more transparent. In Sec. 
V we treat the case of artitrary /J. 
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II. SOLUTIONS OF THE DEGENERATE LAME 
EQUATION 

The solutions of (2) are given in Refs. 2 and 3 and can 
be written: 

Ao(x) =v'3/4 sech2x (- k 2 = 4), 

AI(x) =v' 3./2 sechx tanhx (_1~2 = 1), 

. [ 6 ( eX ) A(x,lc)=exp(lkx) 1--1 ., ---,;--:;x 
+l!? c +e 

12 (eX) 2J 
+ (1 + ik)(2 + ik) eX + c- x 

where the normalization is 

- A(x, k)A*(x, k') dxdl?= 1. 1 J~ 1~ 
27T _~ _~ 

(3) 

(4) 

(6) 

(7) 

These functions constitute a complete orthonormal 
basis set. Completeness of the solutions of Sturm­
Liouville equations is discussed in Refs. 3,4, and 5 
and the normalization follows from the evaluations of 
the integrals in (6) and (7). The main contribution of 
the integral in (7) comes from the wings in which the 
continuum eigenfunctions become complex exponentials, 
and so the normalization is similar to the case of the 
Fourier transform. 

III. SOLUTION FOR THE DISCRETE EIGENFUNCTIONS 
FOR v = 0 

There are two discrete eigenfunction solutions uo(x) 
and 1I1(X) to Eq. (1), the latter of which can be assigned 
immediately 

(8) 

since uI(X) is odd and its overlap integral with the hyper­
bolic secant is equal to zero. The remaining discrete 
eigenfunction can be found by assuming a solution of 
the form 

1 1~ u(x)=UoAo(x)+727T _~ U(k)A(x,k)dl? 

When the parameter l! is zero, Eq. (1) reduces to 

su(x) = (~- (1- 6 SeCh2X)) u(x) 

- E sechx J: u(x') sech(x')dx', 

(9) 

(10) 

which we shall consider in this and the following section 
in detail. Inclusion of the additional term when l! is 
nonzero presents no additional difficulties, as is shown 
in Sec. V. 

Upon insertion of the solution (9) into (10), we obtain 

= - E O!o sechx, (11) 

where o!o is the overlap integral 
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SO(f) 

/S,kJ 
~ ____ ~ ____ ~ ____ -L-L __ -L ____ ~________ , 

2~4 

~---.--------, 

I 

FIG. 1. Eigenvalues s as a function of parameter E. 

(12) 

which must be found self- consistently with uo(x) later 
on. The transform of the hyperbolic secant is 

i
~ n7T 

So = _~ sechx At(x) dx =-4-' (13) 

1 f" S(k) =727T _'" sechxA*(x, k) dx 

=v7Tl8 sech(7Tk/2) G ~ ~~), (14) 

where the integral in (14) is evaluated in Appendix A. 
USing the results (13) and (14), Eq. (11) becomes 

1 f~ (so-3)UoA o(x)+727T .'" (so+k2+1)U(k)A(x,k)dk 

= - Wo [SoAo(X) +rh f: S(k)A(x, k) dkJ. 

Using orthogonality, it follows from (15) that 

(so - 3lUo = - EQloSo, 

[so +k2 + l]U(k) =- woS(k) 

(15) 

(16) 

(17) 

One observes that the lowest eigenvalues So is 3 only 
when the parameter E is zero in which case the eigen­
function uo(x) is simply Ao(x). The quantity (s 0 + k2 + 1) 
is never zero for a discrete eigenfunction. However, 
it can be zero for continuum eigenfunctions, a case to 
be considered in the next section. 

The lowest eigenfunction is 

( ) EO'oSQAo(x) EO!o ["'S(k)A(X, k) dk (18) 
uox=- so-3 -ffi .",so+k2 +1 ' 

where O!o must now be determined self-consistently 
with uo(x). USing (12), one obtains 

1 + E (SoSt + f" S(k)S;(k) dk) = O. (19) 
so-3 ."so+k +1 

P. L. Hagelstein 1595 



                                                                                                                                    

FIG. 2. Even eigenfunction uo(x) at So ~ O. 

When the parameter E is much less than unity, the 
eigenvalue "'0 is positive and nearly equal to 3. As E 

increases, So decreases and approaches - O. 84 asymp­
totically as shown in Fig. 1. Of interest in the stability 
analysis is the value of E at which So becomes equal to 
zero, which can be found analytically by using the fol­
lowing results: 

5 S* Tf2 _0_0 ___ _ 

s (I - 3 Su - 0 16 
(20) 

f~ S(k)~*(ld dl? - !1. f~sech2(T[t/2) dk 
_ooso+k +1 so-08 _00 4+h 

T[2 1 

-16 2' (21) 

where the integral in (21) is evaluated in Appendix B. 
The required value of the parameter E at which So be­
comes equal to zero is found to be 

(22) 

in the case of the parameter v equal to zero. This is 
the boundary between stability and instability of the 
perturbation obeying (1) (for v = 0). When E = 2, the two 
discrete eigenfunctions !loex:) and Ul(X) are degenerate 
and one can construct eigenfunctions which are a linear 
combination of IIO(X) and ul(x), 

In Fig. 2 we show uoex:) at to: =2 where so=Oo The 
negative lobe of the function around x = 2. 5 is due to 
the term proportional to E secnx in (1) (note that it is 
missing completely when E = 0) and grows larger the 
larger E becomes. 

IV. SOLUTION FOR THE CONTINUUM 
EIGENFUNCTIONS 

Assuming a solution of (1) of the form (9) fails for 
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the continuum eigenfunctions because as defined U(k) 
is singular on the real k axis and the integral in (9) 
becomes undefined. Also, since (1) is being treated as 
an inhomogeneous equation (the integral is a constant 
found self-consistently with the eigenfunction solution), 
the solution in general is composed of a particular 
solution and a homogeneous solution which can be added 
in order to satisfy boundary conditions or constraints. 
In the previous section no mention was made of homo­
geneous solutions because in general they blew up 
asymptotically. These two problems are intimately re­
lated; the singularities on the real axis correspond to 
the homogeneous solutions. 

One therefore assumes a solution to (1) of the form 

u(x, s) 

= Uo(s)Ao(x) +72\ f: U(s, k)A(x, /() dk 

U.(s) [ U (s) 
+~Ax,";-(s+1)]+f21T A[x,-f-(s+l)], 

(23) 

where the functions U.(s) and Ujs) determine the 
amount of homogeneous solutions to be added to the 
particular solution and the principal value integral is 
used in anticipation of the singularities of U(k) which 
occur at s + k2 + 1 = O. Upon substitution of (23) into 
(10), one obtains 

1 f~ (s - 3)Uo(s)A o(x) + l2IT _00 (s + 1?2 + I)U(s, k)A(x, l?jdk 

=-Ea(S)(SoAu(;r)+h
1

T[ f:S(l<)A(X, k)dh) , (24) 

where the overlap integral a(s) is defined by 

a(s) = f~~ sechxu(x, s) dx (25) 

and the principal value integral is replaced by a 
Riemann integral since the singularities in the inte­
grand have been removed by the factor (s + h2 + 1) under 
the integral. By orthonormality of the basis functions, 
one has from (24) 

U ( ,) _ w(s)So 
05-- s _ 3 ' 

Ea(s)S(k) 
U(s,h)=- ,2 l' 

S +n' + 

from which the continuum eigenfunctions are 

U(x, s) 

E a(s )SoAo(x) 
s-3 

Ea(s) f ~S(k)A(x, h) dk 
721T _~ s + /(2 + 1 

U.(s) ] U.(s) [ J +~A[x,.j-(s+l) +"1"2iTAx,-V-(s+l). 

(26) 

(27) 

(28) 

The determinantal equation for the eigenvalue s is found 
by requiring a(s) to be determined self-consistently 
with u(x, s), 
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( ) (1 (SoSt f ~ S(k)S* (k) dk) 
a S + 3 + ( ,,2 1 

S - _~ S + F< + 

= U.(s)S*[J - (s + 1)] + Ujs)S*[ -.; - (s + 1)], 

which can be satisfied for all s ~ - 1 since U.(s) and 
if Js) are arbitrary. 

V. SOLUTION FOR THE LOWEST EIGENFUNCTION 
IN THE CASE OF FINITE v 

(29) 

When v is finite, the procedure for constructing the 
lowest eigenfunction 110(:') is very similar to that used 
in Sec. III in the case of v equal to zero" As before, 
we assume a solution of the form (9), which is 

1 f~ II(X) = UoAoC,) +T U(k)A(x, h) dk, (30) 
'\ 1T _ oc 

which upon substitution into (1) yields 

1 f~ (so-3)UoAoCx)+727T _~ (so+k2+1)U(k)A(x,k)dk 

= - (aD (1 + v
2 t sech(X)) 

= - (ao[(1 + 1J2) sech(x) - 21J2 sech3(x)], 

where we have expanded the second derivative of the 
hyperbolic secant. The new result which is required 
is the transform of sech3(x) which can be found to be 

- f~ 3, "V337T QD- sech (.\)At(.\) d., =-1-' 
_00 6 

1 f~ Q(h) =727T _'" sech3(x)A*(x, h) dx 

=_~(I+k2)(I+i.h) (7Tk) 
/ 8 2 _ ik sech 2 ' 

where the integral in (33) is evaluated through a pro­
cedure similar to that described in Appendix A. 

From here, one can write down the lowest eigen­
function following the steps in Sec III to be 

(31) 

(32) 

(33) 

Requiring QI 0 to be determined self- consistently yields 

1 + ( [(1 + 1J2) (SoSt + 1~ S(h)r(ld dh) 
so-3 _~so+k +1 

(35) 

This result is similar in form to the result (19) found 
in the case of IJ equal to zero. 

We wish now to evaluate (35) when So is zero, in 
which caSe we require the following results: 

QoSt = _.!. (J337T) (f31T) = _ 37T
2 

- 3 3 16 4 64 ' 
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(36) 

Using (36) and (37) we obtain from (35) 

2 
(= 1- 1J2 

which is the required result. 

(38) 

In the stability analysis the parameter IJ is propor­
tional to the ratio of the steady state pulse bandwidth 
and the linewidth of the amplifier, and is much less 
than unity wherever the original model is valid. The 
analysis here is valid, however, for arbitrary IJ. 

The construction of continuum eigenfunctions if they 
are desired proceeds analogously with the method used 
in Sec. IV, and we shall not concern ourselves with this 
generalization. 

SUMMARY 

The integra-differential eigenvalue equation (1) has 
been solved and two discrete eigenfunctions uo(x) and 
III (x) were found as well as a continuum of eigenfunc­
tions. A determinantal equation was derived for the 
lowest eigenvalue So and solved analytically at the point 
where s I) equals zero which was the result of interest 
in the stability analysis from which (1) originated. The 
result is a relation between ( and v2 which is valid at 
the stability boundary and can be written as 

2 
(=1_1J2 (atsu=O). (39) 

In the phySical problem where (1) originated the param­
eter 1J2 is less than unity, and so whenever the gain 
saturation parameter ( takes on values larger than 2/ 
0- 1J2) (for 1J2, 1) then the system is not unstable. 

In the case of IJ equal to zero, the continuum eigen­
functions were constructed and a determinantal equa­
tion was derived for the continuum eigenvalues s, which 
has solutions for all s ,- - L This result holds also for 
IJ not equal to zero. 
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APPENDIX A 

We consider the evaluation of the following integral, 
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1m k 

-i 

-2; 

-3i 

FIG. 3. Poles and contour integral for 

:::lx 
sech2(';-k/2) dl 

8 k2 + 4 I. 

-~ 

Re k 

1 1~ . [ 6 ( eX ) 5(1<) =T dx sechx exp(-1.Rx) 1--1 'k -X----X 
v 7T _~ + I' E' + E' . 

+(1+il?~(~+ik) (ex:~-xr]*· (A1) 

The key step in the evaluation of (A 1) is use of the 
identity6 

10 1 

x p
-
1(1_ x)0- 1

2F 1 (a, i3! I' IX) dx 

r(p)r(a) • I 
r(p+a) 3F 2(a,(3,Ply,p+a 1), 

where 

Rep"'O, Rea>O, Re(y+a-a-(3»O. 

(A2) 

(A3) 

The hypergeometric function 2F1 (a, (31 Y I x) can be written 
in terms of a series 

zF1(a, (3 Y I x) 

ap x a(a + 1)(3((3 + 1) x 2 
--1+--+ -+00. 
- Y 1! y(y+1) 2! 

a(a + 1) . , . (a + 11 - 1)13((3 + 1) ... (13 + 11 - 1) 
+ Y(Y+1)"'(Y+I1-1) 

X11 
x-+··· II! • 

(A4) 

The generalized hypergeometric function 3F2( a, (3, y 1o, 
E Ix) can similarly be expressed as a series 

3F 2(a,(3,ylo,Elx) 

1 ai3y x a(a + 1)(3((3 + l)Y(Y + 1) x2 

== +BETI + 6(0 + l)dE + 1) 21 + ... 

a(a + 1)··· (a +11-1)(3((3 + 1)··, 
+ 6(0+1)···(0+n-1) 
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x «(3 + J1 - l)y(y + 1) ... (y + 1/- 1) x" + ... 
E(E+l)"'(E+n-1) II!' 

(A5) 

If one defines 

(a)" = a(a + 1) ... (a + II - 1), (a)a = 1, (A6) 

then these series can be written in the compact form 

(A7) 

(AB) 

These functions are convenient here in that the notation 
becomes more compact and hopefully clearer. We note 
that the series terminates after JJI steps if there is a 
negative integer, - 11/, in the first set of arguments of 
the function. 

The summation in brackets in the integrand of (A 1) 
can be rewritten as 

1--- -.-- + ---[ 
6 ( eX) 12 (eX) 'J * 

l+ik e'+e-x (1 +l?)(2+il?) eX+C'-x 

The sUbstitution 

eX 
Z==--­

eX + e-x 

brings (A1) to the form of (A2), namely 

5(k) =~ ( \ <1-ik)/2(1_ Z)<1+ik)/2 

v 2" )0 

The following identifications are made: 

-(~) p- 2 ' 

_ (1 + ik \ 
a- 2 ), 

a= 3, 

(3 = - 2, 

y=l-il?, 

to yield the result 

5(k)=,12\ [re;ik)r(1~il?)lIr(1) 

( 
1- ik I . I) X 3F2 3, - 2, -2- 1 - 1.k, 1 1 . 

(A9) 

(AlO) 

(All) 

(A12) 

(A13) 

The series terminates after two terms and with the 
identity for the gamma function, 

(1 - ik) r (1 + ik ) h (7Tk) r -2- -2- =7Tsec 2 ' (Al4) 

one obtains after some algebra 

, (l+il?) 5(k)=f7T78sech(iikj2) 2-ik ' (Al5) 

which is the required result. 
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APPENDIX B 

In this appendix we consider the integral 

-!f 1~sech2(7Tk/2) rtf? 
1 - 8 _00 4 + /(2 

(B1) 

which can be evaluated simply by calculus of residues. 
The poles lie along the imaginary l? axis as shown in 
Fig. 3 and by closing the contour about either the upper 
or lower half plane we obtain 

(B2) 

The residue at ,,= ± 2i is due to a first order pole and 
is 

The residues at /, = ± Ili (for II odd) are due to second 
order poles and are 

(B3) 

ReS(±llil=2~[(4~::2)2J. (B4) 

The integral can therefore be reduced to 

Tf2 -, 211 
1=16-"0 (4_}/)2' (B5) 

nodd 

">0 
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This summation turns out to be trivial, 

,,2Jl 1), [1 1 ] 
LJ (4- Jl2)2=4~ (2 _1l)2 - (2 +Jl)2 
nodd odd 

-~ [1 + 1 + -b + ~ + ... - -b -~ - ... J -4 3 5 3 5 

1 
-2' 

giving the required result 

Tfz 1 
1= 16 - 2' 
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A theory of classical limit for quantum theories which are 
defined by real Lie algebras 

Kai DrOhl 

Max-Planck-Institut zur Erforschung der Lebensbedingungen der wissenschaftlich-technischen Welt. D-
813 Starn berg. Germany 
(Received 16 January 1978) 

A theory of classical limit is developed for quantum theories, the basic observables of which correspond to 
elements in some real Lie algebra Lo. For both quantum and classical systems based on Lo the basic 
observables are contained in a unique universal algebra. This is the universal enveloping algebra U for the 
quantum case, and a universal commutative Poisson algebra 18 for the classical case. U and 18 are 
connected by a system of contraction maps. For certain sequences of representations and of vector states 
defined by them renormalized expectation values of the quantum variables are shown to converge to values 
of the corresponding classical variables at some point in the classical phase space. The classical phase 
space is obtained as a limit of certain systems of coherent states. The general theory is illustrated by 
several examples and counterexamples. 

1. INTRODUCTION 

In this paper we develop a rigorous and general theory 
of classical limit for a large class of quantum theories. 
Heisenberg's discussion of this limit! is based on the 
canonical commutation relations for pairs of conjugate 
observables P and Q: 

[p,Q]=P'Q-Q.P=-i, i'1=-1, (1. 1) 

in mic roscopic units where n = 1. 

Heisenberg's uncertainty relations then give a non­
vanishing lower bound for the dispersions of the basic 
observables in any arbitrary state, 

(1,2) 

which is derived from (1. 1). In the limit of large quan­
tum numbers, i. e" for states where the expectation 
values of the basic observables are large compared to 
their dispersions, the expectations values of the physi­
cal quantities may then be replaced by their classical 
value. At the same time the commutator relation (1. 1) 
is replaced by the Poisson bracket for the correspond­
ing classical quantities P and Q: 

- -) - -1 
Q - Q, P- P, lP, Qf=l (L3) 

(see Ref. 2 for a more recent analysis of classical limit 
based on canonical commutation relations). 

We wish to emphasize here that the notion of classi­
cal limit and, in particular, the existence of a Poisson 
bracket for the classical quantities is in no way re­
stricted to theories defined in terms of canonical com­
mutation relations. A careful analysis of more general 
situations seems worthwhile, for example, with a view 
to relativistic particle theories, for which the analysis 
of classical limit continues to be of interest (see, e. g. , 
Ref. 3 and 4). 

For the class of theories we shall study here the 
basic observables are assumed to correspond to ele­
ments in a finite dimensional, real Lie algebra Lo. 

By a quantum theory based on Lo we mean a represen­
tation p of Lo by antisymmetric, linear operators on a 

dense linear subspace D of some Hilbert space H, with 
essentially self adjoint operators ip(X), X in L o, which 
are the basic quantum observables, 

By a classical theory based on Lo we mean a linear 
map P of Lo to the algebra of smooth functions on some 
canonical manifold r such that 

:P(X), P(Y) 1 = P([x, y]), (1,4) 

where : ... , ... } is the Poisson bracket on r. 5 The 
functions P(X) then are the basic classical observables, 

For both types of observables there exist universal 
algebras containing them. For the quantum case this 
is the universal enveloping algebra U of Lo (resp. of its 
complexification L), while for the classical case this is 
the associated Poisson algebra 18. Our discussion of the 
classical limit is based on a certain algebraic relation 
between both algebras which may be considered a con­
traction analogous to notion of contraction for Lie 
algebras" [In Refs. 7 and 8 the inverse process of defor­
mation of the Poisson algebra of classical observables 
is studied as a means of quantization. In fact the canoni­
cal linear map >¥: 18 - U and its inverse discussed in 
Sec. 3 always lead to a deformation of 18 in the sense 
of Refs. 7 and 8).1 

In Sec. 2 we briefly state the generalization of 
Heisenberg's uncertainty relations appropriate for our 
case. 

In Sec. 3 we define the algebra U and a set of 
Poisson algebras isomorphic to 18, discuss their uni­
versal properties and their algebraic relations which 
establish 18 as a classical limit of U on this purely 
algebraic level. 

In Sec. 4 we consider sequences of representations of 
U which can be contracted to a realization of 18 by func­
tions on a certain canonical manifold (phase space). 
This phase space appears as the limit of certain sys­
tems of coherent states in the sense of Ref. 9. 

In Sec. 5 we give some examples and applications of 
our general theory and state a counterexample. 
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2. UNCERTAINTY RELATIONS 

Let H be a complex Hilbert space with scalar product 
(0 •• ",,) andj a unit vector in H: (f,j) = L For any (un­
bounded) linear operator A on H such that j is in the 
domain D(A) of definition of A we write 

w,(A) = (f,Af) (2.1) 

for the expectation value of A in the state wf' 

Proposition 1; Let A, B be any two symmetric linear 
operators on H, and f be a unit vector contained in the 
domains of definition D(A oA}, D(B oE), D(A .B}, and 
D(B ,A). Then 

wf(AA} , wf(EE) ~ ± 1 wf(A • B - B ·A} 1

2, 

and Eq, (2.2) is an equality if and only if 

(A +irB)j=O for some real number r. 

In this case 

(2,2) 

wf(A ,A)=-hwf(A,B-B.A).r. (2,3b) 

Proof; For any real t the vector (A + itB)j is in D(A) 
and D(B). However (A - itB}*-:JA +itB implies that the 
real quadratic function, 

p(tl=wf«A - itB)(A +itB» 

=wf(A .A) +tiwf(A 'B-E ,A) +t2Wf(B2)? 0 

is not negative for any t, which implies Eqs. (2.2) 
and (2.3). Q. E. D. 

If we replace the operators A and B by Ao =A - wf(A)· 1 
resp. Bo the right hand side of Eq. 2.2 does not change 
and we obtain from Eq. (2.2) a lower bound for the 
prod\lct of the statistical mean- square deviations or 
dispersions: 

6 2(A) = wf(A ,A) - wf(A)2, 

6 2(A) , b.. 2(B) > ± IWf(A ·B- BoA) 12. (2.3) 

In particular these cannot vanish Simultaneously in the 
state wf if wf(A ,B - B ·A) * O. For the case where A, B 
satisfy "canonical commutation relations" inequality 
(2.3) is just Heisenberg's famous uncertainty relation. 1 

3. ENVELOPING ALGEBRAS AND POISSON 
ALGEBRAS 

Let Lo be a real Lie algebra and L = Lo EB iLo its com­
plexification, If SB is a complex, associative algebra 
we call ~ representation of L a linear map p: L - sa 
such that 

p(X) , p(Y} - p(Y)' p(X} =p([X, YD, X, Y, [X, yj in L. 

(3.1) 

In particular, SB may be an algebra of linear operators 
on some complex vectorspace V. Denote by :.t =:.t(L) 
the complex tensor algebra over L with canonical map 
L: L -:.t (L), and consider the two sided ideal 3 gen­
erated in :.t by elements of the form 

t(X)· L(Y) - L(Y)' L(X) - L([X, Yj), X, Yin L. (3.2) 

The quotient algebra U = U(L) of:.t by 3 is called the 
universal enveloping algebra of L. There is a linear 
map f: L - U defined by L. We summarize the most im­
portant properties of t: L -U in the following propos i-
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tion which is a statement of well known results (see, 
e. g., Ref. 10, Chap. 2, Ref. 11, Chap. 12.) 

Proposition 2: 

(I) The map L is an injective U representation of L. 

(n) For any SB representation p of L there is a unique 
homomorphism p : U - SB of associative algebras such 
that 

p=p' f. 

(III) Let n be a positive integer, and denote by Un the 
linear subspace of U generated by all elements of the 
form 

Then 

W T 
0 W S is in UT+S, 

and 

W T 
0 Ws _ W S

• W T is in UT
+

s - 1 for Wi in Ul , i =r, s. 

(IV) The bilinear bracket operation: V, W - [V, wj 
= Vo W - W· V satisfies: 

[V, Wj=- [W, VJ, 

[V, w. w'j =[V, wj 0 W' + WO [V, W'], 

[VdV2' V3JJ+CYcl. =0. 

(3,3a) 

(3,3b) 

(3,3c) 

(v) There exists a unique antilinear map a: U- U 
such that: 

(1) (J' (J= id, a[V + (a + ib)Wj =a(V) + (a - ib) <J(W), 

(ii) a(V. W) = a(W) ,aW), V, W in U, a, b in R, 

(iii) a(X)=-X, X in L o. 

We write T* for a(T), 

An element T in U is called symmetric resp. anti­
symmetric if T*=T resp. T*=- T. It follows from 
(V iii) alone that 

[X*, Y*j* =- [X, YJ for X, Y in L, (3.4) 

since X, Y - [XI<, y* 1" is bilinear and this equation holds 
on the real Lie subalgebra L o• 

The algebra U is in fact uniquely characterized (up to 
ismorphism) by the existence of a U representation 
satisfying Proposition 3(II). It This is the reason for 
calling it universal. 

Now let sa be a complex, commutative associative 
algebra, sa is called a Poisson algebra if there exists 
a bilinear map: A, B - {A, B} of sa x 58 to sa such that: 

{A, B}=- {B,A}, 

{A, B 0 B'}={A,B}B' + B{A, W}, 

{At, {A2,A 3}} + cycl = 0, 

(3.5a) 

(3.5b) 

(3.5c) 

An example of a Poisson algebra is given by the algebra 
of smooth complex valued fUnctions on a nondegenerate 
symplectic manifold with the Poisson bracket derived 
from the symplectic form. 5 

If sa is a Poisson algebra we call a 18 realization of 
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L a linear map 71 : L - \8 such that 

171(X) , 71(Y)} = i71([X, YlJ. (3.6) 

An analog of Proposition 2 holds for \8 realizations. 

Proposition 3: Let ~ be the complex symmetric 
tensor algebra over L, and L the canonical map 
L:L-~ 0 

(1) There exists a bilinear map of ~ x ~ to ~ satisfy­
ing (3. 5) such that L is an ~ realization of L. 

(II) For any \8 realization 71 of L there exists a unique 
homomorphism 1T of Poisson algebras, i. e., an alge­
braic homomorphism 1f : ~ -\8 such that {1f(A), 1i'(B)} 
=7i'«(A,B}), which satisfies 71=1T o L. 

(III) Let ~" be the space of symmetric tensors of de­
gree n. Then 

T r , T S is in ~ r+s , 

-[Tr,Tsfisin~r+S-1 forTiin~i, i=r,s. 

(IV) There exists a unique antilinear map a : ~ - ~ 
such that 

a(.Y) ::=ox* = - X, O'(A. B) = a(A) 0 a(B), 

A,B in~, X = 'L(X) , X in L o• 

The proof of Proposition 3, which may be less well 
known than the corresponding results for enveloping 
algebras, is given in the Appendix. 

It follows from the Def. (3.6) and (3.4) that 

{T*,S*}*={T,S} for T,S in~, 

since this is true for T,S in 'L(L). Hence the symmetric 
elements in ~ form a real Poisson subalgebra of ~. 

The Poisson algebra ~ is in fact isomorphic to the 
algebra 1.\3 of complex polynomial functions on the real 
dual L6 of Lo. This isomorphism is given by the linear 
map 

71 : X - iPx , Px(y) = y(X), X in L o, y in L6 . 

The symmetric elements in ~ then correspond to real 
valued functions of Lo. Let (Xr) be a real basis in Lo. 
Then the functions 

pr =Pxr 

are a set of coordinate functions on all of L*o. 
(3.7a) 

In terms of these coordinates the Poisson bracket on 1.\3 
defined by the Poisson bracket on ~ is given by the bi­
differential operator 

{F, c}= 6 (')0 T F· fs c. qs .pt , 
r.s,t P P 

(3.7b) 

where 

[X'-,XS j=6 c;s.x t • 

t 

We may as well take (3.7) as a definition of the Poisson 
bracket on 1.\3, show its independence of the basis 
chosen, and verify properties (3. 5a)-(3. 5c) by explicit 
calculation. However, this procedure offers little in­
sight into how the Poisson bracket on ~ resp. 1.\3 is re-
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lated to the bracket operation on U defined in 
Proposition 2. 

As was the case for the universal enveloping algebra, 
the Poisson algebra ~ is uniquely determined (up to 
isomorphism) by the existence of an ~ realization of L 
satisfying Proposition (2. II). Hence, we should call 
(~, { ... " c.}) the universal Poisson algebra over L, 
although this terminology does not seem to be used in 
the literature. [Note that we have not introduced any 
condition on the Poisson bracket which would corre­
spond to the notion of nondegeneracy for the Poisson 
algebra of smooth functions on a symplectic manifold. 
Such a notion cannot be introduced within this purely 
algebraic framework, where all algebras are finitely 
generated. A typical example of a Poisson algebra 
(which is the only one we shall deal with in this paper) 
is the restriction of 1.\3 to some orbit r of the coadjoint 
action of the group defined by Lo in L6' In general, it 
is not possible to give a complete algebraic characteri­
zation of r. In particular, the ideal of polynomials 
which vanish on r may reduce to zero. In any case how­
ever the Poisson bracket as defined by (3.7) may be ex­
tended to arbitrary smooth functions on r, and then de­
fines a nondegenerate bivector field on r. 13] 

Let us now describe an algebraic relation between 
the universal algebras U and ~ and their bracket opera­
tions, which is of central importance for our discus­
sion of the classical limit. 11,12 

For any positive integer n consider the quotient space 
and canonical projection: 

\8" = U"/U"-l, 71": U" -\8", \80 = <C. L (3.7) 

The direct suml8='D;"ol8" is a linear space. 

Proposition 4: 

(I) \8 is a complex commutative associative algebra 
isomorphic to the symmetric tensor algebra ~ if a 
multiplication law is defined by 

71r (Tr) • 71S(TS) = 71r+S(Tr 0 T S), TI in UI , 

(II) \8 is a Poisson algebra isomorphic to the Poisson 
algebra ~ if the Poisson bracket is defined by 

[71r(T r), 71 S (T S )r=i71Y+s-1(Tr • T' _ T S
• T r), TI in UI . 

(III) There exists a unique linear isomorphism 
~I : \8 - U such that 

il{711(i1'" 711 (X)] =X .. 'X, X in L. 

it has the properties: 

" (i) U" = 6 i/J(\8k), 71"' <J;(H") = B", H" in 18" • 
k"O 

(ii) UI({711 (X), Bl) =i{X, ~I(B)}, X in L, Bin 18. 

(iii) ~Ioa=aoif. 

The proofs of this proposition may be found in Ref. 12 
and Ref. 10, Chap. 2. \8 is called the associated algebra 
of U. 

Let us just remark here that by Proposition 4 the im­
portant properties (3, 5a)-(3, 5c) of the Poisson brackel 
turn out to be a direct consequence of the properties 
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(3. 3a)-(3. 3b) which hold for the "commutator" bracket 
in any associative algebra, 

The lmear isomorphism ¢ is not mulbplicative, 10 e, , 
in general 

i),(B. B j ) = J)(B1 • B)* <P(B)· <P(B l )· 

On thls purely algebraic level ~, is a unique quantization 
map, while its inverse describes the classical limit. 
(The inverse map 4,1 may be used to define a general­
ized Moyal bracket on sa, which is just the image under 
</J-1 of the commutator bracket on U. The Moyal bracket 
then is a deformation of the Poisson bracket on sa. For 
an approach to quantization along these lines see 
Refs. 8 and 9. ) 

We shall henceforth identify the three isomorphic 
Poisson algebras W, sa, and $. In particular, we denote 
for any element Tn in un by 1T"(1'") the corresponding 
complex valued polynomial on Lt. 

4. REPRESENTATIONS OF U AND THEIR 
CLASSICAL LIMIT 

Let D be a dense linear subspace of some complex 
Hilbert space H with scalar product ( ••• ," .), and 
p : L - L in D be a representation of L by linear opera­
tors on D satisfying 

(f, p(X)g) = (p(X*)j,g), f,g m D, X in D. (4.1) 

In particular the elements in La resp. iL q are repre­
sented by antisymmetric resp. symmetric operators, 

By Proposition 2 we have a unique representation p 
of U satisfying 

(f,p(T)g) = (p(T*)j,g), f,g in D, Tin U. (4.2) 

Assume now that the symmetric Operators piX), X in 
iLo, have unique selfadjoint extenSions, which are the 
basic observables of some quantum theory. [Note that 
even in this case there may exist symmetric operators 
/5(1'), Tin U which do not have any self-adjoint exten­
sion (Ref. 14, Chap. X.) These operators are not quan­
tum observables in the strict sense of the term, al­
though all their expectation values for vector states in 
D are reaL] In order to define the classical limit of this 
theory let us make precise the concept of "limit of large 
quantum numbers." 

Let us introduce a real positive parameter A measur~ 
ing the order of magnitude of the baSic observables in a 
vector state wA for a sequence (/5A

) of representations 
of U: 

lim~-lw~(X)=iy(X)=7T1(X)(y), X in Lo, /' in q, 
x-~ 

The physical interpretation of this limit should be clear­
ly understood. Assume we have chosen a basis (X'")r in 
La such that all structure constants are of order unity. 
This would correspond to a choice of "microscopic 
units" for the physical quantities defined by the sym­
metric elements - iXr

, r. For physical states where 
all these quantities assume large values of order A» 1 
we may choose "macroscopic units" by introducing a 
basis (;>,-1 X')r = (yr)r with structure constants of order 
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A -I, The real numbers y(X') of order unity are then 
assumed to approximate the expectation values of the 
"rescaled" quantities - iyr, r in the sense of (4.3). 

Now assume that the dispersions ~2 for ail basic ob­
servables are of the same order of magnitude, which is 
given by their lower bound in (2.2). Then t),2(_ ip(X) Z A, 
hence 

limA-2,6.2[_ ip(X)) 
A~OO 

= lim{A -2wA[(_ iX)(- iX)] - 7T\- iX) 0 7T1(- iX)(y)}= 0 
l. - ~ 

(4.4) 

for X in L o by (4,3), 

In this case a limit corresponding to (4.3) does exist 
for arbitrary elements in U. 

Proposition 5: Let (/5\ w'h. be a sequence of linear 
representations pI. of U satisfying (4.2), with vector 
state w\ Assume that: 

(i) limA-1w'(X) = 7T 1 (X)(y) , 
,~oo 

(ii) lim;>,-2 w'(X,X)=[7T1(X)'7T1(X)](y), XiniL o, yinLt, 
'~oo 

(iii) lim 1i\-mw'(Tm) I < exo, Tm in Um,m, 
X-oo 

Then 

lim i\ -"'w"{T"'i = rr"'(T)(y), Tfrl. in U"'. (4.5) 
I. _ ro 

Proof: By induction on 111, Assume (4.5) holds for 
some m. Elements in Um-

1 are linear combinations of 
elements of the form 

X'Tm, X in iLo, Tm in urn. 
Hence, 

A -m-I W"(X ' Trn) 

= i\ ''''rr' (X) (y)w'(T"') + i\ -mW'{[A -IX - 111 (X)(y) J Tm} 

=W1 +wz=w. 

However, 

I w21 2 ,,; w"{[i\. -IX - rr1 (X)(y)]2} , i\. -2m, W).(rm'" • TmJ - 0 

as A - oa by assumptions (ii) and (iii). Hence, 

lim W = limwi = [1T I (X) , 1Tm(Tm)](y) = rrm-I(X 0 Tm)(y). 
>.. ... 00 )" ... gO 

Q,E.D. 

Proposition 6: Under the assumptions of Proposition 
5 we have 

lim iA ,~.r_·w"(V' 0 Ws _ ws , V') 
l. _ ~ 

(4,6) 

Proof: Apply Proposition 5 and Proposition 4(II). 

Q.E.D. 

We may employ the quantization map </! to give an 
equivalent version of PropOSition 5 resp. 6 applying 
to arbitrary elements in U. Consider the "scaling 
transformation" ~ : L - L, 

~:X-:\x=A-1oX, O<i\inlR, (4,7) 
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and denote by the same symbol its unique extension to 
the symmetric tensor algebra 'H ~ IB, 

X 0 B n == A -n Bn, B n in IBn • 

Then we may replace (4.5) by 

limw~[(J;{~·B)]==B(Y), B in IB~~. 
l.-~ 

(4.5') 

Proposition 7: Under the assumptions of PropOSition 
5 assume furthermore that the representation pA of L 
restricted to La can be integrated to a unitary repre­
sentation of the group ~ belonging to Lo. Let g be an 
element of ~, and T; the unitary representative of g 
in the representation obtained. Then T;(DA) is in the 
domain of definition and invariant under the self-adjoint 
extension of pA(X) for any X in iL o• Call p; the corre­
sponding representation of U on T;(Dl.). Then the vector 
state w; 

wA(V) == (TA-I(l. P ~(V) Tl.-I (A) 
g g.' g g-

satisfies all assumptions of Proposition 5 with 

limw;(A -IX) == Y(7TI (Ql g • X)) = 7TI(X)(Qli • y), 
~ -~ 

where QI is the adjoint representation of ~ on La. 

(4.8) 

Proof: Let ~ == (hi) be a one-parameter subgroup of 
~, CPt the transformation of right multiplication by hi 
on~, and X the left invariant vector field on ~ belong­
ing to~, 

lim-
t
I
[F 0 CPt - F] ==X(F), F smooth on~. 

t_~ 

For some element g in ~ consider the subgroup~! 
:= (ghtg-t ) with corresponding group of transformations 
(cpt) satisfying 

<lg oX(F) =X'(F):= Hm(1/t)(F 0 cP; - F), where QI : g - Ql g t _ ro 

is the adjoint representation. Now let p be a represen­
tation of La as above, and denote by $(iX) the self­
adjoint extension of p(iX), X in La. 

Then by stone's theorem (Ref. 15, Sec. 5c) some 
vector f is in the domain of definition of p(iX) if and only 
if 

lim -ti (T h of-f) =f' '" ~(iX) 'f 
t .. co t 

does exist in the norm topology on H. In particular this 
holds for fin D, and it follows that 

lim !'t' T;I (T h' f - j) t _ 0 I 

= p(iX) T;t(, h; =gh tg-', 

does exist for any fin D, X in La, and 

T;lp(i<lg' X)j = p(iX) 1';'j . 

This shows the invariance of T;lD under all operators 
~(iX), X in La. Furthermore, 

(T;1, Pg(V) T;1 f) = (f, pg(ag 0 V)j> , 

where a is the unique representations of ~ on U defined 
by <l. Q.E.D. 
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The dense set of state vectors 

(4.9) 

is a system of coherent state vectors in the sense of 
Ref. 9> By Proposition 7 this system corresponds in 
the limit A - 0() to a certain orbit r of the co-adjoint 
action of ~ on Lt, 

limw;=Qli'Y isinr, yinL o, ,c;in~. 
l.-ro 

(4.10) 

In the same sense the universal enveloping algebra U 
when considered on this system of states is "con­
tracted" to a commutative Poisson algebra ~ of smooth 
functions on this orbit, 

(4.11) 

The orbit r is a nondegenerate symplectic manifold, I:l, 5 

and is just the phase space of the classical system ob­
tained in the limit. 

In the next section we study some examples for 
which 

w;=wl. for Qlicy=y, A finite. (4.12) 

The corresponding systems of coherent states have been 
discussed in Ref. 9. We note that by (4.12) there is a 
direct correspondence between the system of states and 
r, by which the ~ invariant symplectic measure on r 
defines a corresponding measure on the system of co­
herent states. 

5. EXAMPLES AND COUNTEREXAMPLES 

A. The special nilpotent algebra 

In the simplest case La is defined in terms of a suit­
able basis (Xa,XI ,X2) by the Lie brackets 

(5.1) 

There does exist a unique representation p of L by anti­
symmetric operators which can be integrated to a rep­
resentation of the group~(L)=~ and for which 

(5.2) 

In this representation there does exist, for any real 
r '> 0, a unique vector f satisfying the conditions of 
Proposition 1 for the symmetric operators Rr =ip(Xr ), 

1'=1,2 such that 

(RI +ir·R2)f=0. 

It follows that: 

wt(R 1) =wt(R 2) =0, wf(Rv) = 1, (5.3a) 

(5.3b) 

The vector f is contained in a unique minimal invariant 
domain D of definition for the operators R" r = 0, 1, 2, 
which we use to define the representation p of U. Now 
consider for any real A. > 0 the isomorphism of L, 

Xr - xX" l.Xo = ;\.Xv, xXI ,2 = .f'AXI, 2' (5.4) 

Then the sequence (p\ wl.) of representations defined by 

p).(X)=peX), XinL, 

w).(T) = (j, p).(T)f), l' in U , 
(5.5) 

satisfies all conditions of Proposition 5 with y in La 
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defined by 

1Tl(iXO)(Y) = 1, 

1Tl (iX 1 )(y) = 1Tl (iX2)(y) = O. 
{5.6) 

For any A, the set of vectors (T;of, g inc.»), defines 
a system of coherent states w; in the sense of Ref. 9, 
One has 

A(' ) (-T1\ f :::A('X ) -TIAf) 
W g tXr = g.' P 1 r g , (5,7) 

=A, for r=O, 

=AoUr(g), r=1,2, ur(g)inlR. 

In terms of the original representation p we have 

=1, forr=O, 

=VAUr(g), for r=1,2. 

This shows how the usual discussion of the classical 
limit for the special nilpotent algebras2 which uses the 
the representation p only, together with the sequence 
of coherent state vectors (T;f), is related to our gen­
eral group theoretical formulation. 

B. The algebra of SU(2) 

The algebra is given in terms of a basis (xI, X2, X 3) 

by 

(5.9) 

The irr.educible unitary representation of the group are 
finite dimensional and classified by positive integers m. 
Denote by pm the corresponding representation of the 
algebra. There does exist a unique vector fm such that 

[pm( iXl ) + ipm (iX2) 1f m = 0, 

pm(ix3)jm =±lIIfm. 

It follows from (2.3) that 

wm(ixl) =wm(iX2)=0, w"'(iX3)=±m, 

wm(ixl 0 iXt) = wm(ix2 • iX2) = hn, 

Hence the sequence (pm, wm) satisfies the conditions (i), 
(ii) of Proposition 5, and it is not difficult to show that 
(iii) holds as well. Again, the vectors it 'j"f/!, gin c.», 
define a system of coherent states in the sense of Ref. 
9. The phase space r is just the orbit defined by 

yl 0 yl + y2 0 y2 + y3 0 y3 = i , 
yr=Pxr(y)=1T(-ixr)(y), y in Lt. (5.10) 

C. The algebra of Sl (2 IR) 

The algebraLo is given in terms of a basis (XO,XI,X2) 
by 

(5.11) 

Representations of Lo which can be integrated to unitary 
representations of the covering group c.»=SL(2, IR) have 
been first studied by Bargmann. 15 We consider here the 
so- called discrete classes only. 

Denote by H r the self-adjoint operator corresponding 
to the symmetric element ixr, r=0,1,2. 
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In the representation called D; by Bargmann there 
does exist a unique vector fA such that 

CfA = (HI- iH2)fA =0, 

hence 

From Proposition 1 we conclude that 

wf(Hl .HI) =wf(H2 'H2) =~A. 

(5.12) 

(5.13) 

(5. 14) 

There is a unique minimal invariant domain of definition 
D\ for all operators Hr, r = 0,1,2 containingf\ which we 
use to define the representation pA of U. Again all condi­
tions of Propositions 5 and 7 are fulfilled, and we obtain 

limw\=y, 
A - ~ (5.15) 
yO =_}, yl =y2=0, yr =Pxr(y) =_ i1T(xr)(y). 

The phase space r in Lt is the submanifold defined by 
the equations 

(5,16) 

Using techniques described in Refs. 16 and 17 it can be 
shown that r is isomorphic to the symplectic manifold 
of timelike geodesics on a relativistic spaceform of 
dimension two which has ® as a group of motions. 

D. The special nilpotent algebra: A counterexample 

Consider the Hilbert space H =L2(0, 1) and the domain 
D of infinitely often differentiable functions: 

D = {j in C(O, 1); f(O) =f(1) = OJ. 

On D we define the symmetric operators 

Rof=f, 

(Rtf)(X)=i:X f(x), 

(R d) (x) =xf(x). 

(5.17) 

(5.18a) 

(5. 18b) 

(5.18c) 

The map p : Xr - - iRr> r = 0,1,2 defines a represen­
tation of the special nilpotent algebra of Sec, 5A and of 
its enveloping algebra U. 

For vectors fin D, Heisenberg's uncertainty rela­
tions hold, 

(5.19) 

Since R2 is bounded, p cannot be integrated to a repre­
sentation of the corresponding group. On the other 
hand there does exist for any real number a a self­
adjoint extension Rj of R j with discrete spectrum, the 
eigenvectors of which are given by the functions 

J::(x) = exp(- ia) 0 exp(- 21Timx), Rj f:: = (a + 21Tm)j:: • 

(5.20) 

For any such vector the vector Rd:: is not in the do­
main of Rj, hence Proposition 1 does not apply to 
such vectors and, in fact, we have 

(5.21) 

For the sequence pA of representations constructed as 
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in Sec. 5 A we have 

hence 

limA-l w'(iX2) =0, 
A - ~ 

for any sequence of vector states, since R2 is bounded. 
This shows that a classical limit leading to the usual 
phase space of the special nilpotent algebra does not 
exist for this type of quantum theory. 

A successful discussion of the classical limit in this 
situation can be based on a different algebra defined 
by the equations 

[Yo,Yj]=Yz, [Yo,Yz]=-Y\I [YuYz]=O, (5.22) 

with a representation p' on D given by 

a 
p'(Yo):f(x)- ax f(x) , 

p'(Y j ): f(x) - iA sinx of (x) , 
(5.23) 

p'(Y2): f(x) - iA cosx ·f(x). 

We leave it as an exercise to the reader to demonstrate 
the existence of a classical limit in this case. 

APPENDIX: PROOF OF PROPOSITION 3 

~ is generated by the elements in a:·1 and T(L). For 
any linear map {3 : L - ~ the linear map ~ : ~ - ~ defined 
by 

~(i\ o. oXm)= t XI 0 0' (3(Xk ) 00 oX"" ~(1) =0, "Yr = 7(Xr ) 
k=j 

(Al) 

is a derivation on ~, L e., satisfies ~(S • T) = /)(S) • T 
+S 0 ~(T). Conversely any derivation on ~ is uniquely 
determined by its restriction to T(L) via (Al). For X, Y 
in 7(L) define the bracket operation by 

(A2) 

where aj is linear. Then ax is a derivation, and we 
may for A fixed in ~ consider the map Y A: X - a x(A), 
Putting 

(A3) 

we can easily see that the bracket thus defined satisfies 
(3. 5a) and (3. 5b). As for (3. 5c) we observe that the 
trilinear map 

0: AI ,A2 ,A 3 - {At, {Az,A 3}} + {Az, -(A 3' A!}} + {A3' {AI ,A2}} 

is a derivation on any of its arguments if the remaining 
arguments are kept fixed. It follows that 0 vanishes 
identically since it vanishes for AI in T(L), i = 1, 2, 3, 
by Jacobi's identity. Finally let 7r be a 18 realization 
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and 7i : ~ -18 the unique homomorphism such that 
7r=1foT. Then we have in 18, 

It follows that the image of ~ in 18 under 1f is a Poisson 
sub algebra generated by elements z 0 1, 1f(X), Z in a:, 
X in L, Since any derivation on this subalgebra is 
uniquely determined by its action on a set of genera­
tors we conclude as above that 

{7i(X), 7i(B)}=7i{X, B}, and finally 

{7i(A),7i(B)}=7r({A,B}), forX in L, A,B in~, 

The proofs of (III) and (IV) are straightforward and will 
not be spelled out here, !2 Q, E, D. 
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Exact vacuum solutions of Einstein's equation from 
linearized solutions aI, bl 
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It is proved that if (M ,gab) is an exact vacuum solution of Einstein's equation, la a null vector field and if 
lalb satisfies the linearized equation on background (M,gab)' then gab + I)b is an exact vacuum solution. 
Applications to the search for asymptotically flat spacetimes are discussed. 

I. INTRODUCTION 

It is of interest in general relativity to discover and 
interpret solutions of Einstein's equation. Additional 
solutions may provide more insight into the theory; 
their interpretation may permit the description of addi­
tional physical systems. We present here a result which 
might contribute to the discovery of more solutions as 
well as their physical interpretation. SpeCifically it 
selects a preferred subfamily of the linearized solu­
tions -namely, certain linearized solutions which lead 
to exact solutions. This result might be useful because, 
while it is easier to obtain linearized solutions, exact 
solutions are, of course, the more interesting. 

In Sec. II we prove the main result· if, for la a null 
vector field, I al b is a linearized solution on the vacuum 
background gab' then gab + li b is an exact vacuum solu­
tion. In Sec. III we point out that this result might be 
useful in the search for asymptotically flat spacetimes. 

II. THE THEOREM 

Let (M,gab) be a one-parameter family of spacetimes, 
1. e., a C~, four-dimensional manifold M with nonde­
generate metrics gab(A) of the Lorentz signature. 
Assume that for every value of the parameter A the 
metric gab(A) satisfies the vacuum Einstein equation 
Rab(gab(A)) = O. 1 Equating (d IdA)(Rab[gab(A)]) 1 '=0 to zero, 
we obtain 

(1) 

where gab = gab(O) is the background metric, 'Va the de­
rivative operator associated with gab' and hab = (dldA) 
x (gab(A)) 1),=0 is the first order change of the metric gab 
along the family gab(A). Equation (1) is called the lin­
earized equation; its solutions linearized fields o That is 
(M, gab + Ahab ) is an approximate (for A - 0) solution of 
the Einstein equationo 

Our result is the following. 

Theorem 1: Let (M, gab) be an exact vacuum solution 
of Einstein's equation and let la be a null vector field 
such that hab = lalb satisfies the linearized equation (1). 
Then gab + lal b is an exact vacuum solution. 

The theorem says that in the class of linearized fields 

a) Supported by the NSF contract PRY 76-81102 with the Uni­
versity of Chicago o 

b)Presented as part of a thesis to the Department of Physics, 
University of Chicago, in partial fulfillment of the require­
ment for the Ph. D. degree. 

there is a preferred subclass, namely those of the form 
lalb for some null vector field lao Furthermore, the 
structure of the Einstein equation is such that gab + la l b' 
which ought for" small" I a to represent an approximate 
solution, is, in fact, always an exact solution. 

The proof consists of substituting gab + lal b into 
Einstein's equation, expanding and using the linearized 
equation (1). 

We begin with Eq, (1) on the field IJb' i.e., 

'Vm'Vm(Zalb) _2'Vm'V(aUb/m/=0_ (2) 

Set xa = Im'V mla. Contracting (2) with lalb we obtain xaxa = 0 
while the nullness of la yields laxa = O. So, la and x a, as 
two real, null, and mutually orthogonal vector fields, 
must be parallel, i. e., I" must be geodesic. Now define 

Then contraction of Eq. (2) with la yields 

('Vml")('Vml n)= - (:0 + e) - (1:> + 8)10 

while the definition of 8 yields 

('Vmln)('Vnlm) = ~ - (H (08, 

(3) 

(4) 

where a dot denotes the directional derivative along la. 

We next obtain the Ricci tensor of [['ab- First note that, 
since la is null, g;b=gab + lalb is again a nondegenerate 
metriC, and in fact its inverse is .[['ao = gnb _Ial b , where 
la = gamlm• 

Let 'V~ denote the derivative operator compatible with 
g;b' The connection tensor field 2 C:b which relates the 
two derivative operators, 'Va and 'V~, is easily found to 
be 

which, because of the nullness of la, satisfies C:
b 

= 0, 
IbC:b= cplmla, ImC:b= - CPlalb' The Ricci tensor of g;b' 
on the other hand, is given by 

(5) 

(6) 

Substituting (5) into (6), using (2), (3), (4), and Rab= 0, 
we obtain finally R~b=O. QED 

Note that the condition that a linearized field hab be of 
the form lalb with la null is not gauge invariant, 1. e., it 
is not invariant under the addition to hab of the symme­
trized derivative of a vector field. Thus, it is con­
ceivable that one could use the gauge freedom to make 
applicable the hypothesis of the theorem, 1. e., to have, 
given h ab , hab + 2'V(a~b) of the form lal b' for a suitable 
choice of ~b' 
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We compare Theorem 1 with other known results. 
Kerr and Schild3 found all vacuum solutions of Einstein's 
equation of the form i1"b + lal b> where 11ab is flat and la is 
a null vector field whose divergence and twist do not 
both vanish at any point. What Theorem 1 says then is 
that the Kerr-Schild metrics could have been obtained 
by just solving the linearized equation for lalb' 4 They, 
however, obtained these metrics using a tetrad 
approach, in which the linearity of the equations is not 
transparent. Theorem 1 is even stronger: It is applica­
ble also in a curved background. 

III. ASYMPTOTICALLY FLAT SPACETIMES 

An extensively studied class of solutions in general 
relativity are those which are asymptotically flat at null 
infinity,5 i. e., which describe the spacetime of an 
isolated body. It turns out that it is rather difficult to 
find asymptotically flat solutions of Einstein's equation. 
Indeed, although this notion was developed in order to 
study gravitational radiation, no exact asymptotically 
flat radiative solution is yet available. In this section we 
remark that Theorem 1 may be useful in the search for 
asymptotically flat spacetimes. 

Let (M, gab) be an asymptotically flat spacetime, 6 so 
in particular there exists a manifold ]lJ = ]\:1 U Y with 
smooth metric ltab and smooth scalar n such that on lill 
itab = n2!fab and on y n = 0, na = ~an is nonzero and null 
and 'Vanb = O. Let hab be a linearized field on (2\1, gab)' 
Then hab is said to preserve asymptotic flatness to first 
order if n"!z"b admits a smooth extension to!J such that 
nll"b l1"il° I, = 0, i. e., if the conditions in the definition 
are satisfied to first order. 7 Consider now the special 
case in which the linearized field is of the form lalb' 
Obviously, it preserves asymptotic flatness to first 
order if and only if 

(i) m a admits a smooth extension to!J and (ii) there 
it is a multiple of l1a, Le., mJi"lg =0, Actually, (ii) is 
a consequence of (i) and the linearized equation on l"i b • 

An analogous statement is also true in the full theory. 

Theor('J}I 2: Let (M, gaJ be a vacuum asymptotically 
flat spacetime and let I a be a null vector field on M such 
that lalb satisfies the linearized equation on (jH,g"bL If 
the vector field ma admits a smooth extension to !J, 
then the solution (AI, gab + I al b) is also asymptotically 
flat. 8 

Proof: Since (2\:1,1;"b) is asymptotically flat, there is 
a manifold with boundary ij = 2\1 U!J and a choice of a 
conformal factor n such that the conditions in the defi­
nition of Ref. 6 are satisfied. We choose the same 
manifold M and the same conformal factor n to prove 
asymptotic flatness of (2\1, g:b = gab + I al b)' Since smooth­
ness of nla implies smoothness of if:b = n"li~b' we only 
have to show that l1a is null on!J with respect to ,if:b and 
that "l~nb=O ony. 

For the first set fa = m a' so fa is a smooth null vector 
field on M; moreover, fa is geodesic in Ui1,gab)' Define 
1>, e, Kbyfm vmf a =1>fa, e="lmt"" andfmnm=K. Equa­
tion (3) expressed in terms of fields on (M,gab) is 

6K2 + n2(~mt")(Vmfn) + n 2fmVm(1) + e) - 4nfmvmK 

+ n2 (1) + e) 1> - 2 nK( 1> + e) = O. 
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Since the fields K, <I>, e, fm are automically smooth 
on all of M, this equation implies that K vanishes on !J . 
Thus, .if/abna nb 19 = [.ii'"biza nb - K2l9 = 0, 1. e., the nullness 
of lia is preserved. 

For the second note that, since g:b satisfies the 
vacuum Einstein's equation, we have that ~~Ii)J = 0 if 
and only if limy n-lif/abn"n

b
= O. 9 But the latter follows 

from K IJ = 0 and limy n- 1 
!J,flb l1/i b = O. • 

We consider now the relationship between the asymp­
totic gravitational fields of the two metrics gab and Ii:b' 
The Einstein equation and asymptotic flatness imply that 
the Weyl tensor of Xlab Cabed vanishes on!J, so n-ICabed 
admits a smooth extension to y. The asymptotic gravi­
tational field is then described by 

K l' n- 1 C -m-n "0= ll? amonn /l • 

[For example, in the Newman-Penrose notation, Kao 

= - 2(Re>¥g)n)lb + 2>¥gn( ibl + 2~~jl(lbl - >¥~t;lb - ifi~~~. 
>¥~ is the radiation field. The Bondi mass is essentially 
the integral of >¥~ over a cross section of !J, I Thus, a 
spacetime is free of gravitational radiation if and only 
if Kab = n(" Vbl for some vector field V 0 tangential to !J. 
We shall in fact show that 

(7) 

So, the radiation fields of the two spacetimes gab and .1;;b 
are the same-in particular either both possess gravi­
tational radiation or neither-but in general, given a 
cross section of _9, they may have different Bondi 
masses. 

Finally, we sketch the proof of (7). Using the relation 
C~bcd = Cabe" - 2'V1aCbic + 2C~laCb1m between the respective 
Weyl tensors of the (vacuum) metrics g;/J and gab' using 
Eq. (5) and the nullness of la, it is easy to show that 

(8) 

Expressing (8) in terms of fields in the conformally 
completed spacetime and using that on!J nI a and iT" are 
parallel (because they are both null and orthogonal on 
!J), we obtain (7).'0 Q,E.D. 

IV. DISCUSSION 

Theorem 1 might be a useful tool in the search for 
exact solutions of the Einstein vacuum equation. When­
ever the perturbations, i. e., the linearized solutions, 
of some spacetime have been obtained, one can ask for 
those perturbations which lead to exact solutions. If the 
original solution is asymptotically flat, one can possibly 
obtain additional asymptotically flat spacetimes. The 
main source of difficulty in the search of the perturba­
tions of the type considered here is the fact that the 
condition !zab = I al b with I a null is neither gauge invariant 
nor linear. Theorem 1 might also be a useful tool in 
the analysis and interpretation of certain known exact 
solutions. The idea would be to describe these solu­
tions, via Theorem 1, in terms of linearized fields on 
a well understood background. In particular, the Kerr­
Schild family and the plane wave solutions-which are 
precisely the vacuum solutions of the form Ilab + lalb with 
/lab flat and la some null vector field-can be studied as 
perturbations of flat spacetime. 
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How large is the class of solutions that can be ob­
tained via Theorem 1? It is apparently possible for a 
null za satisfying the hypothesis of Theorem 1 to be nei­
ther a principal null direction of the Weyl tensor of gab 

nor of g~b; the class may therefore be quite large. 
Unfortunately, we do not have any explicit examples. 
So, to get some feeling for how large is the class of 
solutions one might obtain from Theorem 1, we look at 
the Kerr-Schild class of solutions. These spacetimes 
are all algebraically special (in fact, of types [2, 1, 1] 
or [2,2 j) and all admit at least one Killing field. The 
general solution in this class is determined by one 
arbitrary analytic function of one complex variable. For 
the present spacetimes, i. e., with an arbitrary curved 
background, one can prove the following. First, direct­
ly from Eq. (8), if ta is a repeated prinCipal null direc­
tion of the Weyl tensor of gab, then za must also be a 
repeated principal null direction of the Weyl tensor of 
g~b' Second, for Za a principal but not a repeated princi­
pal null direction of the Weyl tensor of gab, then la need 
not even be a prinCipal null direction of g~b' Further­
more, again for Za principal but not repeated, Za must 
have zero twist. 11 We do not know any further simple 
consequences on gab and Za of the assumption that both 
gab and gab + lalb are vacuum solutions. In fact, we know 
of no application of Theorem 1 to spacetimes other 
than the Kerr-Schild class and the plane waves. 

Why does Einstein's equation have this curious 
feature? 
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Within the framework of two-Hilbert space scattering theory the existence of the strong Abel limit of a 
certain operator is proved, leading to the following results. A generalized Lippmann identity is derived 
that is valid for all channels, rather than only two-body channels. On shell equivalence of the prior, post 
and AGS transition operators is rigorously proved, thus closing a gap in previous proofs. Results 
concerning the existence of the scattering operator as a strong, rather than weak, Abel limit are 
presented, and their implications with respect to the problem of unitarity are discussed. Finally, the 
possibility of exploiting operator limits of the Obermann-WoJIenberg type is studied, with negative 
results. 

I. INTRODUCTION 

In time-dependent non relativistic multichannel 
quantum scattering theory the question of in what sense 
the operators 

(1.1) 

approach zero as t ~ Xl has proved an interesting one. 
Here the operators 11s and 1101 are channel Hamiltonians, 
and the operators P s and P", are the orthogonal pro-
j ections of the N -particle Hilbert space H N onto the 
respective channel subspaceso The symbol 0SOl denotes 
the Kronecker delta An early result was thatl

-
3 

w-lim Wl)tl=O ({3,a = arbitrary channels), (1.2) 
t- 00 

which is important because it implies that the ranges of 
the channel wave operators n; are orthogonal sub­
spaces of H N' That is, 

(1. 3) 

Later, in a paper on the problem of asymptotic com­
pleteness, Combes 4 proved that 

s-lim Wo± (t) = 0 ({3, a = two-body channels). 
t .. oo /JCt 

(1.4) 

The matter now rests at this point 

It is natural to ask if the restriction in Eq. (1.4) can 
be extended to include breakup channels. The detailed 
forms for 11", and POI given, for example, by Hunziker3 

show that in Eq 0 (101) the operators 11 a and 11", may be 
replaced by commuting self-adjoint operators Ta and 
1'",0 These commuting operators are, up to a constant, 
the kinetic energy operators of the various channels 0 

The operator T", has the further property that it com­
mutes not only with' POI but also with the proj ections 
Pa for all breakup channels of 0'. Thus, if {3 is a break­
up channel of~, IIW~",(!)wll =IIPaP",U!1I for all J in /-/N' 
Since PeP", is not, in general, zero, it follows that the 
strong limit of W~", (t) cannot be zero. Indeed, because 
of Eq. (L 2), the strong limit cannot even exist. Thus, 
in any multichannel theory in which breakup channels 

are included, the channels in Eq. (1,4) must be re­
stricted so that (3 is not a breakup channel of 0'.5 

Among the interesting implications of the result of 
the foregoing paragraph is that the method used by 
Combes to prove asymptotic completeness fails at en­
ergies Ao above the breakup threshold. An essential 
ingredient in his proof is that for all channels G that are 
open at energy Ao the adj oint wave operators n~* satisfy 

n±; Ev(Ao) = s;~~m P a exp(± i11at) exp('f il1vt)PN E N (Ao)' 

(15) 

Here 11N is the full N -particle Hamiltonian with spec­
tral family Ev( .), and P N is the orthogonal proj ection of 
H N onto the subspace of absolute continuity of 11N • 

Multiplying Eq. (1.5) from the right by n~ and applying 
standard techniques of abstract time-dependent scatter­
ing theory, one obtains 

s-lim W~",(t)E",(Ao)=O ({3,a=open channels), (106) 
t·~ 

as a necessary consequence of Eqo (1.5), Here EOI(') 
denotes the spectral family of 11",. But the argument 
of the preceding paragraph is precisely that the strong 
limit does not exist if (3 is a breakup channel of 0'. One 
is forced to conclude that Eq, (1.5) is not true above 
the breakup threshold, a conclusion agreeing with pre­
vious less general results. r. 

Our curiosity being thus aroused, and motivated by 
other problems we encountered in a recent paper, 7 we 
decided to study strong Abel limits of the operators 
W~OI (I). This paper contains the results of our study. 

In Sec. 2 we formulate the problem in a two Hilbert 
space framework and prove (Theorem 1) that the two 
Hilbert space analog of Wl", (I) has zero as a strong 
Abel limit. The proof requires that certain estimates 
be uniform in the channel indices, which forces us to 
introduce a technical assumption, Assumption (~). 
Concerning this unwanted intrusion, we are consoled 
by the fact that most physical systems appear to satisfy 
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the assumption 0 In particular, if only a finite number 
of channels are included, the assumption is satisfied. 

In Sec. 3 we discuss some of the ramifications of 
Theorem 1. 

We show (Theorem 2) in Sec. 3A that a generalized 
Lippmann identity8.9 is an almost immediate conse­
quence of Theorem 1. This identity has been used fre­
quently in recent work on the X-particle problem. 10_14 

The version used there is, however, valid only for two­
body channels,14 while the version given by Theorem 2 
is valid for arbitrary channels. 

In Sec. 3B we prove (Theorem 3) that a certain sym­
metric transition operator T gives the same scattering 
operator as certain asymmetric operators T(±). The 
symmetric operator T is the two Hilbert space version 
of the transition operators of Alt, Grassberger, and 
Sandhas, 15.16 while the asymmetric operators T(±) cor­
respond to the prior and post operators used by 
Lovelace. 17 

Arguments for this equivalence have long been 
known, 1015-17 and typically go as follows. One supposes 
that T~~) (E + iE) and T~;) (E + iE) are two candidates, 
so-called off shell extensions, for the transition op­
erator from channel a to channel p. The difference of 
the two is then shown to have the form 

TJ~) (E+iE)-T~~) (E+iE)=A 8",(E+iE)(E+iE-H",], 

(1.7) 

where A8", (z) is an operator-valued function that is 
analytic in a neighborhood of the energy shell. Then, 
since (E + iE - H",] vanishes on the energy shell, and 
since A~o:(Z) is well behaved on the energy shell, the 
difference in Eq. (1. 7) is asserted to vanish on the en­
ergy shell. This is taken to mean that TJ~) and TJ~) cor­
respond to the same scattering operator. 

The proof that such an argument is flawedl8 is by 
counterexample. Let A a", (z ) = o~* P "'. This is a 
particularly nice operator-valued analytic function, 
being bounded and independent of z. But with this choice 
of A8o: the right side of Eq. (1. 7) not only does not give 
z~ro contribution to the scattering operator S8"" but 
glVes S81> itself. 6 

The mathematically correct procedure is first to 
substitute the difference in Eq, (1. 7) into the spectral 
integrals which relate transition operators T 81> (E + iE) 
to the scattering operator S8o:, and then to prove that 
the limit as E - 0 is zero, We use this rigorous 
procedure in Sec. 3B, thereby closing a gap in the 
previous proofs. 

Section 3C is concerned with a further question Con­
cerning the spectral integrals relating the two Hilbert 
space transition operators T(E + iE) and T(,o) (E + iE) to 
the scattering operator S. It has been proved6 that the 
spectral integrals are first to be evaluated and then the 
limit E - 0 taken in the weak operator topology. If the 
formulas are true only in the weak topology, then prob­
lems are posed6 for the standard time-independent proof 
of the unitarity of S. Hence the question arises whether 
the formulas are actually valid in the strong topology. 
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Section 3C contains the results (Theorems 4, 5, and 6) 
that we can offer on the topic. 

Finally, in Sec 3D we discuss a different limit process 
that was introduced by Obermann and Wollenberg. 13 

Their limit is intermediate in "strength" between the 
strong limit as t - co and the strong Abel limit. We con­
clude (Theorem 7) that most of the limits sought in this 
paper do not exist in their sense. 

2. THE MAIN THEOREM 

The notation of ReI, 7 is adopted. 

The dynamics of the full N-particle system is 
specified by the Hamiltonian H.v, which is a selfadjoint 
operator on the full N-particle Hilbert space H N' The 
spectral family of H.v is denoted by E N(A). 

Asymptotically the particles are grouped into clusters. 
For a given clustering A of particles there is a subspace 
H A of H N that contains the asymptotic states with that 
clustering. The proj ection operator P A that projects 
H ... onto H A can be written 

(2.1) 

where the strong topology sum is over channels a with 
clustering A, and where PI> is the proj ection of HN onto 
the subspace HI> of asymptotic states appropriate to 
channel a. For a given clustering A the various P '" 
are mutually orthogonal. 

The subspaces H A are combined into a direct sum 
space, 

H",rJ'HA , 
A 

(2.2) 

which is one of the two Hilbert spaces of the theory, 
the other being H .... A (singular) mapping J: H - HN is 
defined by 

(2.3) 

for all <p=8A ¢A inH. The adjointJ* ofJ is then given 
by 

J*~'= tfjP A~' 
A 

for all ~, in HN • 

(2.4) 

The asymptotic cluster Hamiltonians HA have the form 

(2.5) 

The operators Hl are sums of Laplacians in appropriate 
variables and commute with P A' The operators HA have 
on H A the form given by 

(2.6) 

The A", are sums of eigenvalues of appropriate subsystem 
Hamiltonians. The cluster Hamiltonians are combined 
into an operator H that is defined on H by 

H<p=8HA tPA' (2.7) 
A 

The spectral family of the self-adjoint operator H is 
denoted by E(A). 

Wave operators O· are now defined by 

0,0= s-limO(t), 
t ... ±oo 

(2.8) 
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where a(t) is defined by 

a(t)", exp(iHNt)J exp(- iHt). 

These wave operators are partial isometries, 

a'*a' =1 and a'a'* = E~, 

(2.9) 

(2.10) 

where I is the identity on II and E~ are the orthogonal 
projections of liN onto the ranges of the wave operators 
a'. 

The adjoint wave operators a'* satisfy 

a'* =w-lima*(t). 
t-o±~ 

(2.11) 

where a*(t) is the adjoint of a(t) defined in Eq. (2.9). 
As we have seen in Sec. 1 the weak limit in Eq. (2.11) 
may not, in general, be replaced by the strong limit. 

The two Hilbert space analog of ~",(t) defined in Eq. 
(1.1) is the operator 

Wet) = a* (t)n(t) - 1= exp(iH t)(J* ,] - I) exp( - iHt).(2. 12) 

It is now necessary to assume something about the set 
of numbers .\'" in Eq. (2.6). 

Assumption (L): The set 

2>= closure of {XIX=A" for some channel a} (2.13) 

has Lebesgue measure zero. 

Assumption (L) is automatically satisfied if there are 
only a finite number of possible bound states for each 
cluster of particles and, therefore, only a finite number 
of channels. This is thought to be commonly the case 
in nuclear physics where the interactions have short 
range. It is also true if the set of .\'" 's has accumulation 
points which are either finite in number or themselves 
have a finite number of accumulation points. This is the 
case, for example, for interactions described by dila­
tion analytic pair potentials such as the Coulomb 
potentiaL Although it seems reasonable to believe that 
all quantum mechanical problems of interest would 
satisfy Assumption (L), we know of no general proof 
of that fact. What is known about the problem has been 
recently reviewed by Hunziker:o and by Simon. 21 

The main mathematical result is the following. 

Theoye III 1: If Assumption (2~) is satisfied, then 

s-limL'(tJ::cc 0, 
6; ... 0+ 

where 

L '(E) = EJ ~dl exp( - EI) W(± [). 
o 

(2.14) 

(2.15) 

jJyoo/: For all <I> =' cil A in // the vector U(f)<t> can be 
written as 

(2.16) 

where the cluster matrix elements? L~A are given by 

L~A(t)"'F( r/lexp(-d)H'BA(±tl, (2.17) 

=E J~dt exp(-Et) exp(± iHBf)(?BPA - 0BA PAl 
o 

xexp('f iHAt). (2.18) 

Since there are only a finite number of clusterings and 
hence only a finite number of operators L~A(E), it 
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suffices to prove 

s-limL~A (d = O. (2.19) 
E -0+ 

Because L~A(E) is uniformly bounded, II LBA (€)II '" 1, it 
suffices to prove Eq. (2,19) on a dense subset of 
I-! A' Such a subset is provided by vectors CPA of the form 
CPA = L;:) cP '" with only a finite number of cP '" different 
from zero. The linearity of L ~A (E) then implies that it 
is suffic ient to consider CPA with only one nonzero cP ex' 

Since L ~A (E) '" 0, we are thus led to prove that 

(2.20) 

where 

L ~A (d<b" = E f dt exp( - iEt) exp(± iH B tlP B 
() 

xexp ('fiHAt)CPe; (B*A). (2.21) 

Define now the operators lcf. Eq. (2.5)] 
1\ 

J(Bc=HB -.\",iN (2.22) 

and 

(2.23) 

where IN is the identity on fiN' By taking note of the 
commutation properties of these operators, one can 
write 

exp(± iH BllPB exp('f iHAtlCPe; = exp(± iKBtlP B 

xexp(±iFBt)<iJe;' (2.24) 

The operator F B is self -adjoint with only absolutely 
continuous spectrum. Denote its spectral family by 
F B(A). Then Eq. (2.21) may be written in the form 

L~A (E )cp" =E J¢ ril exp(- Etl exp(± iKBt)PB o 

Interchange of the order of integration is justified by 
Lemma 2 of Ref. 6, with U(t, A) and B(t) of that lemma 
being identified with E exp( - £I ± iAt) and exp(± iK Btl PB , 

respectively. The result after evaluating the Bochner 
integral is 

(2.26) 

We must prove that for every 6 ... 0 there exists an 
o such that IIL~A(El¢,,11 <: ° for E <i'o' 

First choose a and iJ such that 

(2.27) 

for all f > O. This can be done since L~A (d is uniformly 
bounded, and since 

s-limFB(.\)=IN and s-limFB(A) =0. 
1\ ... 00 ). .... _oc 

Next, consider the set S[a,lJie=S [a,IJ], where 

5 c= closure of {x I x =.\~ -.\" for some (3 with 
clustering B}. (2.29) 

Since, by Assumption (L), the set 5 has Lebesgue mea­
sure zero, the set S[a, h] is compact and has measure 
zero. It is therefore possible to cover S[a, Ii J by a finite 
collection N = LJ ~=1 hi' Pi) of disjoint open intervals such 
that 
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d = inf { I x - y I : ne: S[ a , b] and y EO [a, b] - N} 

is greater than zero and such that 

II FB (N n [a, b ])¢"II < (0/3). 

(2.30) 

(2.31) 

This last requirement is possible because of the 
absolute continuity (with respect to Lebesgue measure) 
of F B • Since IIL~A(E)II ~ 1, one has 

IIL~A(E)FB(Nn[a, b])¢"II«o/3). (2.32) 

It remains to show that 

(2.33) 

for all E < Eo, where Eo is some positive number and 
N'=: [a,b] -N n[a,b]. 

The set N' consists of a finite number of disjoint 
closed intervals [xp yJ. Thus 

L~A (E)FB(N')¢" =~L~A (E)FB([X p Yi])¢" (2,34) 
• 

=6(± iE)fi[A ± iE + KB]-lPBdFB(A)¢". 
i Xi (2.35) 

The spectral integrals in Eq. (2.35) can be converted 
to Bochner integrals by an integration by parts. 22,23 

The result is 

filA ± iE +KB]-lPBdF B(A)¢", 
Xi 

= [y i ± iE + K B]-lPBF B(Y i)¢" 

- [Xi ± iE +KB]-lPBFB(X i )¢" 

+ JYidA[A ±iE +KB)"2PBF B(A)¢". 
xi 

(2.36) 

On the set N' the operators [A ± iE + K B)"kp B have bounds 
given by 

II[HiE+KB)"kPBII ~d-k (k=I,2). (2.37) 

The right side of Eq. (2.36) is therefore uniformly 
bounded in E, and 

IIP'i[H iE + KB)"lp BdF B(A)¢"II ~ d-2 (2d + Yi -xi)11 ¢"II. 
~ (2.38) 

Combining this result with Eq. (2.35) yields 

II L~A (E)FB(N')¢",II ~E~d-2(2d +Yi -xi)II¢",II. (2.39) 
• 

It is now clear that Eo can be chosen so that Eq. (2.33) 
is true for all E < Eo' 

Combining Eqs. (2.27), (2.31), and (2.33) finishes 
the proof of the theorem. QED 

To gain a certain perspective on Theorem 1, it is 
useful to rewrite it once more in terms of the channel 
and cluster matrix elements. 7 

Corollary: For all channels (3 and rt 

s-limEj ~ dt exp(- Et)W;",(t) = 0, 
e .. 0+ 0 

(2.40) 

where W~" (t) is defined by Eq. (1. 1). If Assumption (2;) 
is satisfied, then 

s-lim L~A (E) = 0, 
E" 0+ 

(2.41) 

where L~A (E) is defined by Eq. (2.18). 

The proof is immediate from Eq. (2.14) upon taking 
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channel or cluster matrix elements. Assumption (2;) is 
not needed for Eq. (2.40) since its sole purpose was to 
enable us to handle an infinite number of channels 
simultaneously 0 

3. RAMIFICATIONS 

A. The Lippmann identity 

An alternative form of Theorem 1 is interesting in 
that it provides a generalization of the so-called LiPP­
mann identity. 8,9 

Theorem 2: If Assumption (2;) is satisfied, then 

s-lim ('fie) I (A -H~iE)-l(J*J -I)dE(A)=O, 
E" 0+ ). 

and 

s-lim (± if) J dE(A)( J*J - 1)(A - H ± iE)-l = O. 
E ... 0+ ). 

Proof: Substitute the spectral resolutions 

exp(± iHt)= I exp(± iAt)dE(A), 
I. 

(3.1) 

(3.2) 

(3.3) 

for the left- or right-hand exponentials of Eq. (2.15). 
Apply Lemma 2 of Ref. 6 to justify the interchange of 
Bochner and spectral integra tions. Equations (3.1) and 
(3.2) result immediately from evaluation of the 
Bochner integrals. QED 

Corollary: Let E A (A) be the spectral family asso­
ciated with the cluster Hamiltonian H A 0 If Assumption 
(2;) is satisfied, then 

s-lim (~iE) J (A - HB ~ iE)"lp BPA dE A (A) = 0 BAPA' 
e ... 0+ ). 

and 

(3.5) 

Proof~ The proof is immediate upon taking cluster 
matrix elements of Eqs. (3.1) and (3.2). QED 

Note that just as with Eq. (2041) the cluster labels 
A and Bin Eqs. (3.4) and (3.5) can be replaced with 
channel labels c; and (3. If this is done, Assumption (2;) 
can be dropped since its sale function was to allow us 
to handle a possibly infinite number of channels 
simultaneously. 

We also remark that the Lippmann identity is usually 
expressed8

,9 in the form 

s-lim(~iE)(A-HB~iEl-ll¢,,(A»)=oBAI¢A(A», (3.6) 
E: ... 0+ 

where I ¢" (A» is an improper eigenfunction of H A with 
improper eigenvalue A. The spectral integrals in Eqs. 
(3.4) and (3.5) reflect, we believe, the proper mathe­
matical way to deal with these improper eigenfunctions. 
Another difference between Eq. (3,6) and Eq. (3.4) is 
the lack of the projection operator P B in Eq. (3.6). This 
is the reason why Eq. (3.6) is valid only when A has two 
fragments. 14 On the other hand, Eqs. (3.4) and (3.5) 
are valid for all clusterings A and B. 
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B. On-shell equivalence of T( ±) and T 

For scattering with short-range interactions we have 
previously discussed7 the question of whether the sym­
metric transition operator of the type of Alt, Grass­
berger, and Sandhas and the nonsymmetric operators of 
the type used by Lovelace correspond to the same 
scattering amplitude. This question has been answered 
previously in the affirmative, 10-17 but with less rigor 
than is presented here. 

The symmetric operator T(z) is defined on the domain 
of H by 

T(z)= (z -H){J*(z -HN)-lJ - (z _H)-l}(Z -H), (3.7) 

where z is understood to be in the resolvent set of H N , 

the full N -body Hamiltonian. The connection between 
T(z) and the scattering operator S is given by the 
formulas 6 

S-1=w-lim(-21Ti)lJ dE(A)OJiI.-jJ.) 
E .. 0+ :\ lJ. 

x T([A + jJ. + iE]/2) dE(jJ.), (3.8) 

=w-lim s-lim(-21Tilj J dE(jJ.)O'l(A-jJ.) 
61 .. 0 '" 6 2 .. 0+ X J1 

(3.9) 

=s-lim w-lim(-21Ti)J J dE(A)T("A+iE2 )0. (A- jJ.)dE(jJ.). 
e .. 0+ e 2...0+ ;\ tJ. 1 

1 (3,10) 

In Eqs. (3.8)-(3,10) the function 0, (x) is defined by 
0. (x) = (EI 1T )(E 2 + X2)-I. The spectral integrals are repeated 
(not double) integrals. The ones in Eq. (3.8) may be 
done in either order, while in the other equations the 
jJ. integration must be done first. 

The nonsymmetric operators are defined by 

T(+)(z) = (z - H){J*(z - H N)"lJ - (z - H)-lJ*J}(Z - H), (3.11) 

T(-)(z)= (z -H){J*(z -HN}"lJ -J*J(z _H)-I}(Z -H). (3.12) 

The question is, then, whether T(O)(z) can be substi­
tuted for T(z) in Eqs. (3.8)-(3.10), 

To establish that T(O) can replace Tin Eqs. (3.8)-­
(3.10), it is sufficient to prove that if the differences 

(3.13) 

and 

~-(z)", T(z) - T(-)(z)= (z -H)(J*J-1) (3.14) 

are substituted into the spectral integrals of those 
equations and the various E limits taken, the resulting 
limits should be zero. This is straightforward7 when 
Eq. (3.13) is used in Eq. (3.9) and when Eq, (3,14) is 
used in Eq. (3.10). 

To go farther, one must substitute the differences in 
Eqs. (3.13) and (3.14) into Eqs. (3.8)-(3.10), and 
express the resulting integrals in terms of integrals of 
the resolvent operators. These resolvent operators are 
expressed, in turn, as Bochner integrals involving the 
exponentials exp(± iHt). The order of Bochner and 
spectral integration is reversed, resulting in the follow­
ing equations: 
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=L'(c): (3.15) 

(3.16) 

= (E~lE2 + l)L -(E 1) + (E~lE2 - 1 )L'(E 1L (3.17) 

The operators LO(E) are defined in Eq. (2.15). 

It is apparent from Assumption (W4) of Ref. 6, which 
for multichannel systems of the type discussed here 
was verified in the appendix of that paper, that 

w-limL"(E) = O. (3.18) 

The assertion of Theorem 1 is that the weak limit can 
)e replaced by a strong limit if Assumption (:0) is true. 

When combined with the preceding analysis, the 
remark of the previous paragraph yields a rigorous 
proof of the following theorem. 

Theorem 3: Equations (3.8) and (3.9) are true with 
the operator T replaced by T(:). Equation (3.10) is 
true with~he operator T replaced by T(-). In addition, 
if Assumption (:0) is true, then Eq. (3.10) is true with 
T replaced by T(+). 

This theorem establishes, for all practical purposes, 
the rigorous equivalence of the operators T(z) and 
T(O)(z) to the extent that they yield the same scattering 
operator for particles with short-range interactions. 

C. On replacing weak limits by strong limits 

The reason for the presence of weak limits in 
Eqs. (3.8)--(3.10) is that the weak limit in Eq. (2.11) 
cannot be replaced by the strong limit. Theorem 1 
raises a new possibility, however, which is based on 
the following theorem. 

Theorem 4: If Assumption (:0) is true, then 

QO* = s-limE)o"'dt exp(-Et)Q*(± t)E~, (3.19) 
e .. 0+ 

where Q*(t) is the adjoint of Q(t) defined in Eq, (2.9) and 
where E,/ is defined in Eq. (2. 10 L 

Pyoof: Starting with Eq. (2,8), it is an easy matter 
to prove that 

0= s -limE J '" dt exp( - Et)I1* (± tJ{ Q(± t) - l1o}. (3.20) 
e .. 0+ 0 

Combining Eq. (3.20) with Theorem 1 and Eq. (2.10) 
yields Eq. (3.19) QED 

Since the time independent formulas for the scatter­
ing operator S involve only Abel limits and not the direct 
time limits, the appearance of 11'* as a strong Abel 
limit reopens the question of whether the weak limits 
in Eqs. (3.8)-(3.10) can be replaced by strong 
limits. 

In this direction we can prove the following. 

Thcore m 5: If Assumption (2.;) is true, and if S is 
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unitary, then the weak limits in Eqs. (3.8) and (3.9) can 
be replaced by strong limits. 

Proof: From Eq. (2,8) it is apparent that 

s-limE j '" dt exp( - Etl{n*(t)n( - t) - I} 
e .. 0+ 0 

=s-lim)'" dtexp(-Et){n*(t)n--/}. 
E" o. 0 

(3.21) 

Using Eq. (3.19) and the well-known fact that E~=E;' 
is necessary and sufficient for S to be unitary, one Can 
rewrite the right side of Eq. (3.21). The result is 

S-I=n+*n--I 

= s-limE) '" dt exp( - Et){n* (t)n( - t) -I}. 
E ... o. 0 

The procedure used in the proof of Theorem 4 of Ref. 
6 now proves the theorem for Eq. (3.8). To prove the 
result for Eq. (3.9), one follows the proof of Theorem 
5 of Ref. 6. Equation (3 0 53) of Ref. 6, can, however, 
now be replaced by 

S -1::= s-limE) '" dt exp(- El) 
f .... 0+ 0 

x [exp(+ iHt)J*n- exp( - iHt) 

- exp(- iHt)J*n- exp(iHt)]. (3.23) 

Equation (3.23) follows from the fact that E~=E;', 
Theorem 4, and from the intertwining property. The 
procedure used to prove Theorem 5 of Ref. 6 now yields 
the desired result for Eq. (3.9), QED 

The assumptions of Theorem 5 are not sufficient to 
allow one to prove that the weak limit in Eq. (3,10) can 
be replaced by a strong limit. To that end, we can 
offer the following result, 

Theorem 6: Suppose that 

0= s-limEj '" dt exp(- Et)n*(t)(I
N 

- E~), 
~ .. 0+ 0 

(3.24) 

where IN is the identity on H N' and that Assumption (:0) 
is true. Then, the weak limits can be replaced by 
strong limits in Eqs. (3.8)-(3.10). 

Proof: If Eq. (3.24) is true, then Eq. (3.19) is true 
with E~ replaced by IN' The proof of Theorem 5 of 
Ref. 6 then is true with all limits being strong limits, 

QED 

Equation (3.24) is especially interesting in that it 
is a necessary, but doubtless not sufficient, condition 
for !t' to be asymptotically complete in the sense of 
Kato. 24 Assuming that H N has no singularly continuous 
spectrum, and assuming that n+ is asymptotically com­
plete so that P,v = E~, then J N - E~ is the orthogonal 
projection of H N onto the subspace spanned by the 
eigenvectors of H,v. In this case Eq. (3.24) then 
follows from the fact that H has only absolutely contin­
uous spectrum, and hence f(E + i\ - Hr1 has strong 
limit zero as E - 0, uniformly in A. 

A proof of Eq. (3.24) from first principles is there­
fore of great intrinsic interest as a possible first step 
in a proof of asymptotic completeness, 

Note also that although in Theorem 6 no assumptions 
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about n- are made, the weak limits in Eqs. (3.8)­
(3.10) can be replaced by strong limits. In particular 
one can imagine that E~ * E;, and, hence, that S is not 
unitary. It follows that the replacement of weak limits 
in Eqs. (3.8), (3.9) with strong limits is not as directly 
tied to the unitarity of 5, as Theorem 5 might suggest. 

In summary, Theorem 4 does not imply that the weak 
limits in Eqs. (3.8)-(3.10) can be replaced by strong 
limits. There seems to be some, albeit indirect, con­
nection between replacing the weak by strong limits and 
the unitarity of the scattering operator S. The objec­
tions raised in Ref. 6 to unitarity proofs based on dif­
ferences T(\ + iO) - T*(\ + iO), evaluated as strong 
limits, therefore still stand unanswered. 

D. The Obermann-Wollenberg theory 

The fact that the weak limit in Eq, (2.11) cannot 
be replaced by a strong limit means that Kato's two 
Hilbert space theorem (Theorem 6.3 of Ref. 24) on 
asymptotic completeness is not valid in the multi­
channel case in general (see, however, Ref. 4 for a 
related result in a more limited context). Obermann 
and Wollenberg, 19 within the context of two-particle 
scattering, have, however, developed a similar theory 
that involves only a restricted sort of Abel limit. In 
their theory one might hope to replace Eq. (2.11) by 
the stronger condition that 

(3.25) 

The assumptions of Theorem 6.3 of Ref. 24 are suffi­
cient to guarantee Eq. (3.25) with E~ replaced by P

N
, 

In the two-particle theory of Obermann and Wollenberg 
the validity of Eq. (3.25), with E~ replaced by P N , is 
necessary and sufficient for the wave operators to be 
complete (Theorem 3 of Ref. 19). 

Alas, that aspect of the approach of Obermann and 
Wollenberg does not generalize to multichannel scatter­
ing, as the following theorem shows. 

Theorem 7: Let E': be the orthogonal projections of 
H!{ onto the ranges of the cluster wave operators 

n; '" s-lim exp(iH Nt) exp(- iHAt)PA• (3.26) 
t-i<lO 

Then, Eq. (3.25) is not true for ~'E E'AHNCPNHN, 
k*O. 

Proof: A necessary and sufficient condition for Eq. 
(3.25) to be true is that 

o = !~IJlE J~"'dt exp(- El)(4', [E~n(± t)n*(± t)E~ - E~ J¢). (3.27) 

Substitute E~E~ =E~ and JJ*=lN + ?/PB , where 2;' 
means sum over B*O, into Eq, (3.27). The result, 
for 1)=E~zjJ, is 

EJ
o 
~dt exp( - El)(4', [E~[2(± t)n*(± t)E~ - E:]4') 

=L> fdt exp( - El)liP B exp('l= iH ,vt)E~ 4'112 
B*O 0 

~ EJ ~ dt exp(- Ell/iPA exp('f iH Nt)E; 1)1/". 
o 

Using the method of Kato (Theorem X, 3. 3 of Ref. 25) 
we prove that 

(3.29) 
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From this it is simple to see that, as E - 0·, the right 
side of Eq. (3.28) approaches 

(3.30) 

Thus, when the limit is taken in Eq. (3.25), the limit, 
if it exists, is greater than II J; 11 2

, and, hence, cannot 
be zero. QED 

Corollary: If the limits exist, 

s-limE} ~ dt exp( - Et)P N[ S1(± t)S1*(± t) - IN]P N* O. (3.31) 
e .. 0+ 0 

This corollary is stated because of the parallel struc­
ture of the integral in Eq. (3,31) and that of Eq. (2.15). 
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A short review of the literature on plane symmetric space-times (PSSTS) is given in the Introduction. 
The rest of the paper concerns itself with an investigation of some of the kinematical aspects of PSSTS, 
i.e., properties of PSSTS which do not depend on the field equations. In particular, the existence of four 
special coordinate systems is considered. It is shown that the existence of these coordinate systems is not 
guaranteed for a general Ck (k.;; 1) plane symmetric metric (PSM). For k = 2, two of the coordinate 
systems exist in a weak sense whereas the existence of the other two is not guaranteed in any sense. A 
local intrinsic type classification is introduced in Sec. 3, and it is shown that the existence of an extra 
Killing vector is correlated to the classification. Finally, the local equivalence of two given PSSTS is 
considered in Sec. 4. It is shown that some algebraic equations arise from the analysis. These algebraic 
equations may lead directly to the solution of the problem of the local equivalence of two given PSSTS. 

INTRODUCTION 

PSSTS were defined by Taub. 1 Taub found a static 
solution (g) to R~v=O. Davis and Ray2 have shown that 
there is a homogeneous solution (gh) to Rp.v = 0 and 
pointed out that there is apparently no natural way to 
join gs and gh' thus obtaining a solution in an extended 
manifold. Novotny 3 has pointed out that Ks and gh are the 
only known solutions to R"v = 0 with plane symmetry and 
have given as generalization of gs and gh' solutions to 
R uv - ~g uvR + Agp.v = 0 with plane symmetry. Bonnar" 
has shown that a Robinson-Trautman metric, which 
contains a singular hypersurface p=O, may be trans­
formed to gs in the region p < 0 and may be transformed 
to gh in the region p> O. 

HorskSr5 has given a physical interpretation of gs as 
the field of a plane shell and has solved the dynamical 
problem of collapsing plane shells of dust. H~rsky 
and Novotny6 matched gs to the interior of a homogeneous 
thick plane disk and later, Horsky and Horskrr matched 
gs to the interior of an inhomogeneous thick plate. Davis 
and Ray" showed that gs could be interpreted physically 
as a field of ghost neutrinos and later that gh could also 
be interpreted as a field of ghost neutrinos. 2 Davis and 
Ray9 found the general form of the metric for plane 
symmetric neutrino fields when T >J.v* O. Plane symmetric 
self-gravitating fluids with pressure equal to the energy 
density were studied by Tabensky and Taub. 10 Static 
plane symmetric zero-rest mass scalar field were 
analyzed by Singh, 11 and Sistero12 analyzed some non 
static plane symmetric zero-rest mass scalar fields. 
A large class of solutions of the exterior Einstein­
Maxwell equations with plane symmetry was found by 
Letelier and Tabenskyo 13 Banerjee and Chakrabarty 14 

corrected an error of sign in the Letelier and Tabensky 
article and studied some plane symmetric charged dust 
distributions. Humi and LeBrittonl5 found some interior 
solutions to the plane symmetric Einstein-Maxwell 
equations. Tiwari and Nayak!6 found plane symmetric 

a) An abstract of this paper (called Review of Plane Symmetric 
Space-Times) was contributed (by first named author) to the 
Eighth International Conference on General Relativity and 
Gravitati.on, Uni.versity of Waterloo, 1977. 

vacuum solutions of the Brans-Dicke field equations 
and later, 17 plane symmetric interior solutions of the 
Brans-Dicke field equations. Pandy and Sharma18 have 
studied PSSTS from the point of view of imbedding class. 

No claim of completeness is intended for the above 
summary of the literature on PSSTS, but clearly, 
quite extensive work has been done on plane symmetry, 
However, we feel that this symmetry is still not under­
stood as well as the more popular spherical and 
cylindrical symmetries. The following work deals with 
some aspects of PSSTS which are independent of the 
field equations and hence is a study of the kinematics 
of PSSTS. 

Taub's! definition of PSSTS is given in Sec. 1. It is 
pointed out that the plane symmetry of a space-time 
may not obtain globally. 

Section 2 is a discussion of admissible transforma­
tions. Four different coordinate systems are analyzed, 
The idea is to start with a general PSM and look for 
admissible transformations which simplify the form of 
the metric. 

In Sec. 3 we introduce an intrinsic local type classifi­
cation for PSSTS. Under this classification a plane 
symmetric space-time (PSST) is locally one of three 
possible types. It is shown that under certain conditions 
there is a one-to-one correlation between an extra 
Killing vector and the local type. 

Section 4 concludes this discussion with an analysis 
of the problem of the local equivalence of two given 
PSSTS. It is shown that the transformation equations 
can be reduced to algebraic equations. If the algebraic 
equations are not satisfied identically, they may yield 
the desired transformation, or imply that the transfor­
mation does not exist. 

1. PLANE SYMMETRIC SPACE-TIMES 
Taub1 defined PSSTS as space-times which admit the 

three-parameter group of transformations 

Xl = cos(e)x l + sin(e)x2 + a, 

.y2 = _ sin(e)x1 + cos(e)x2 + Ii, 

(l.la) 

(1. Ib) 

(1. Ie) 
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as a three-parameter group of isometries. The 
infinitesimal generators of this group of transforma­
tions are 

kt.) = or, k Cb ) = 6~ , 

/'(8)=x26i _x16~. 

(1.2a) 

(1. 2b) 

Killing's equations imply that with respect to the above 
coordinate system the metric must have the form 

ds 2 = A(dx l2 + dX22
) + Hdx 32 + 2Cdx'dx4 + Ddx42 

, (1. 3) 

where A, B, C, and D are suitably smooth [say ck (k >0)] 
functions of x' and X4 only. In order that (1.3) be a 
space-time metric, A, B, C, and D must satisfy the 
Lorentz signature requirements 

A>O, 

B +D + [(B _D)2 + 4C2]I/2 > 0, 

B +D - [(B _D)2 + 4C2Jl/2< O. 

Note that the inequalities (1. 4) imply that det(g"v) 

=A 2(BD - C 2
) < 0, 

(1. 4a) 

(l.4b) 

(1. 4c) 

Equivalently, a PSST is a space-time which admits 
maximally symmetric two-dimensional subspaces whose 
metric has positive eigenvalues and zero curvature. 19 

Unless one specifies that the transformations given by 
Eqs. (10 1) are isometries for all x3 and x\ the plane 
symmetry of a space-time may not obtain globally. 
For example, consider the metric 

? 2 2 2 42 
ds- =A(dx 1 + dx 2 

) + Bdx' + 2Cdx3dx4 +Ddx 

+ h(X3)h~v(x)dx"d.\.v, (1. 5) 

where A, B, C, and D are as before, h(x3
) is the "test 

function" defined by 

h(x3
) = exp[ - 1/(1 - X

32
)], Ix31.; 1; h(x3

) =0, IX31? 1, 

(1. 6) 

and where the h"v(x) are suitably smooth functions of the 
x" chosen so as to give (1. 5) the correct Signature in 
the region ! x 3

! < 1. This metric is plane symmetric for 
I x3 I? 1 but not necessar ily so for I x 3 j < 1. We shall 
consider space-times which are globally plane sym­
metric. In this case the transformations given by Eqs. 
(1. 1) are isometries for all x 3 and X4. 

2. ADMISSIBLE TRANSFORMATIONS 

A PSM ds2=g"vdx"dxv can by means of a coordinate 
transformation be reduced to the form given by Eq. 
(1. 3). A coordinate system suc h as this is said to be 
natural for plane symmetry. An admissible transforma­
tion20 of a PSST is a transformation which leaves the 
form of the generators given by Eqs, (1. 2) invarianL 
In order to deduce the general form for the admissible 
transformations of a PSST, consider the general 
transformation 

(2.1) 

The transformation given by Eqs. (2.1) is an admissible 
transformation for PSSTS if 

1618 

aF' 
(j"-o"- , 
1- 1 ax" 

aF' 
6"=0"--, 

2 2 ax" 

J. Math Phys., Vol. 19, No.7, July 1978 

(2.2a) 

From these equations it follows that 

(2.2b) 

(2.3a) 

(2.3b) 

is the general form for the admissible transformations 
of a PSST, 

Suppose that the functions F and G are of class Ck'l. 
In general, Eqs. (2.3) need not have an inverse which 
is of class Ck.l The inverse function theorem tells us 
that in regions where the Jacobian 

aF aF 
ax3 ax4 aF ac aF ~*O J= = ax3 ilx1 - ilx4 

ilC ?C 
(lx 3 , 

(lx3 ax4 

Eqs. (2,3) are locally invertible and the inverse 
functions 

x 3 =f(xi1 , X'4), X4 =g(X'3, x,4) (2.5) 

will also be of class Ck +!. When this is the case, Eqs. 
(2,3) define a local admissible coordinate transforma­
tion for PSSTS. Admissible coordinate transformations 
transform natural coordinates into natural coordinates. 

One can use invertible admissible transformations to 
express the metric in many different forms. This be 
becomes a useful exercise when a simplification for the 
form given by Eq. (1.3) is achieved. We shall consider 
the following four forms of a PSM: (A) harmonic, (B) 
orthogonal, (C) the Taub! form, and (D) Petrov's2! 
form for conformal reducible metrics of type II. 

A. Plane symmetric space-times in harmonic coordinates 

We shall say that a PSST is naturally harmonic if a 
natural coordinate system exists such that 

ds 2 = A'(dx,12 + dX,22) + B'dx,1
2 

+ 2C'dx,3dx,4 

(2.6) 

where A', B', C', and D' are Ck (k -:> 0) functions of X,3 

and X,4 only, satisfy the Lorentz signature requirements 
and the harmonic coordinate conditions, 22 

0= (Y - g' g'~V), V' These conditions may be written out 
explicitly as follows: 

(A'D'(C,2 _ B'D't!/2).3 =(A'C'(C,2 _ B'D,)"1/2).4' 

(2.7a) 
(A'C'(C/2 _ H' D,)"'/2)'3 = (A' H'(C)2 - B'D,)"'/2),", 

where the subscripts 3 and 4 refer to X,1 and X,1, 

respectively. 

(2. Th) 

Now we proceed to show that every C3 PSST is locally 
equivalent to a C! naturally harmonic PSST. 

Given a PSST with metric given by Eq. (1. 3) subject 
to the inequalities (1. 4), the four independent solutions 
(when they exist) of the equation 

(2.8) 
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where 

rv =1g"'P g"k{gk" ,p + gkp,,, - g"P,k}' (2. g) 

and 

(g"'V) = [IA 0 
o 11A 
o 0 
o 0 

o 
o 

DI(BD _ C 2 ) 

_ C/(BD _ C2 ) 

- C/(:D - C2)l 
BI(BD _ C 2 ) 

(2,10) 
define a local system of harmonic coordinates. 22 We 
want to look for solutions of Eq. (2.8) in the form of 
Eqs. (2.3). Note first of all that ~=Xl (or XZ) is a 
solution of Eq. (2.8) if r l (or rZ) vanishes identically. 
Inspection of Eqs. (2.9) and (2.10) show that r l and rZ 
vanish identically, and therefore X/l :: Xl and X'Z = x 2 

are two independent solutions of Eq. (2.8), 

We now look for solutions of the form 0(x3
, x 4

). 

Equation (2.8) becomes 

D0,33 - 2C~ ,34 + B4 ,44 = (BD - C2)[0,3r3 + ~ ,4r4]. (2.11) 

If B (or D) is not equal to zero, Eq. (2.11) may be 
divided by B (or D) yielding a form of Eq. (2. 11) 
suitable for the Cauchy-Kowalewski theorem. However, 
the conditions of this theorem (analyticity) are too 
restrictive to be generally applicable to general 
relativity. Hawking and Ellis23 point out that a C z-
metriC guarantees the existence of unique geodesics. 
They give examples where a C l

- metric is used to 
describe gravitational shock waves (Choquet-Bruhat 
and Penrose), thin mass shells (Israel), and solutions 
containing pressure free matter where the geodesic 
flow lines have two- or three-dimensional caustics 
(Papepetrou and Hamoui). Synge Z4 claims that the 
metric should be CI across 3-surfaces of discontinuity 
and C3 everywhere else. If the g "v are Ck

, det(guv) is 
C·. Since det(g uv) * 0 the g"'V will also be Ck. 

Now rewrite Eq. (2.11) as follows: 

(D0,3 - C~,4).3 + (- C0,3 +B0,4),4 +P0,3 + Q0,4 = 0, 

(2.12a) 

P= C,4 -D,3 - (BD - CZ)r3, Q = C,3 - B,4 - (BD - CZ)r4. 

(2. 12b) 

If A, B, C, and Dare C2
, P and Q will be CI and we 

are guaranteed the existence of a unique (corresponding 
to suitable initial data) local weak (CI) solution of the 
hyperbolic (i. e., BD - C2 < 0) second order linear 
partial differential equation (2. 12a) for the function Ij! 
of the two independent variables x 3 and X4. If A, B, C, 
and Dare C3, P and Q will be C2 and this guarantees 
the existence of a unique (corresponding to suitable 
initial data) local C2 solution in the usual sense. 25 

Suppose A, B, C and Dare C3. It is possible to find 
two solutions, say F(x3

, x4
) and G(x3

, X4) of Eq. (2. 12a) 
in a neighborhood of an initial noncharacteristic curve 
a(s), s E: [O,so]' if the initial data are chosen as follows 
[Haak and Wendland (25)]~ 

FI.cs) = F(s), [(DF,3 - CF,4)X' + (CF,3 - BF,4)..0J1"S) 

= V(s), (2.13a) 
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. . 
G/a(s) = G(S)' [(DG,3 - CG,4)X

4 + (CG,3 - BG )X
3
J1.IS) 

=W(s}, (2. 13b) 

a(s}, F(s), G(s)E: C 2([0,so]}, V(S), W(s)E: CI([O,so]), 
(2.13c) 

where a "dot" means differentiation with respect to the 
parameter s. From Eqs. (2.13) it follows that 

JlaCs ) = (F,~G'4 -.F,.G,3)/aIS) ='1(s) 

= (Ve - wi)/ (B}(32 + 2C..0X4 + DX42 ). (2.14) 
• 2 ., • 2 

The quantity B)(3 + 2CX3X4 + DX4 * 0 for a noncharac-
teristic curve and the initial data may be chosen so that 
VG - WF* O. This shows that the initial data may be 
chosen so that J(s) '" 0. It then follo>\'s [in the same 
way as the solution to Eq. (2.12a) was constructed] 
that J", 0 in a neighborhood of a(s). 

8. Plane symmetric space-times in orthogonal 
cordinates 

We shall say that a PSST is naturally orthogonal if a 
natural coordinate system exists such that 

(2.15) 

where A, B, and D are C· (k > 0) functions of x3 and x· 
only and satisfy the signature requirements (1. 4) with 
C=O. 

Now we proceed to show that a Ck naturally harmoniC 
PSST is locally equivalent to a Ck naturally orthogonal 
PSST. 

Consider the naturally harmoniC PSST defined by 
Eqs, (2.6) and (2.7). Consider also the change of 
basis 

(2.16a) 

(2.16b) 

where 17 is a function of X
,3 and X'4. With respect to this 

new basis, the metric takes the form 

2 22 I Z I Z g=A'(W l + w ) + (B' - C,Z D')W3 + (1 71 2D')w4 , 

(2.17) 

in the regions where D' * D. (We use the letter g to 
denote the metric with respect to a noncoordinate 
basis.) Now we require that the new basis be a coor­
dinate basis, i. e., that 

Equations (2, 16b) and (2, 18b) lead to 

oG cG 
17C'=--, 17D'=--, OX,3 2X,4 

a a 
ax'. ('ryC') = ax,3 (17 D 'L 

(2.18a) 

(2.18b) 

(2.19a) 

(2.19b) 

Equation (2.19b) is the integrability condition for Eqs. 
(2. 19a) and ensures that w· = dx4 will be an exact 
differential. The Ck solution of Eq. (2. 19b) [via Eq. 
(2. 7a)] is 17 =A'/(C,2 - B' D,)1/2, G is obtainable from 
Eqs. (2. 19a) by integration and therefore G is also Ck, 
The Jacobian of the transformation given by Eqs. (2.18) 
is J =17D' '" ° in the regions where D' * 0, Apart from 
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the possibility D' = 0, the new basis is a coordinate 
basis and the metric is given by 

2 2 ( C2 ) r 2 (1 )2 2] g=dS'i
l 
=A(dx1 + dx

2 
) + B - Ii LdX3 - A dx4 

• 

(2.20) 

The primes have been removed, indicating that A' , B ' , 
C', and D' have been evaluated in terms of x 3 and X4. 
The subscript R1 indicates that the metric is defined 
in the regions R 1 for which D' f. O. 

We may also transform (locally) the naturally 
harmonic PSM to a naturally orthogonal PSM via the 
change of basis 

w1 =dX,1, w 2 =dx,2, w 4 =dx,4, 

w3 =1) (B'dx'3 + C'dX,4). 

(2.21a) 

(2.21b) 

With respect to the neW basis the metric takes the form 

(2.22) 

in the regions where B' * O. The requirement that the 
new basis be a coordinate basis is satisfied with the 
choice 1) =A' /(C,2 _ B'D,)l /2. 

The Jocobian of the transformation given by Eqs. 
(2.21) is J=1)B'f.O in the regions where B'*O. Apart 
from the possibility B' = 0, the new basis is a coordinate 
basis and the metric is given by 

g=ds~ =A(dx12 + dXZ2) + (C21I-1_1J)[A-V~2 _ dX"2]. 
2 (2.23) 

The "bars" indicate that A' , B', C', and D' have been 
evaluated in terms of ;\'3 and X4 and the subscript R2 
indicates that the metric is defined in the regions R2 
for which B' * O. 

Since we have an explicit form for the local transfor­
mation of a naturally harmonic PSST to a naturally 
orthogonal PSST we may discuss some of the global 
properties of this transformation. If D' (or B') is 
definite (strictly greater than or less than zero), the 
transformation, Eqs. (2.18) [or Eqs. (2.21)] from a 
naturally harmonic PSST to a naturally orthogonal PSST 
is global. On the other hand, we have to admit the 
possibility that the hypersurfaces D' = 0 and B' = 0 
exist for some naturally harmonic PSSTS. If this is 
the case, then either D' = 0 and B' = 0 have an empty 
intersection or they do not. 

Let us first of all consider the case where (D' = 0) 
rl (B' = 0) = ¢. In this caSe consider a COVering of the 
naturally harmonic PSST with four coordinate patches: 
Rl for which D' > 0, & for which D' < 0, R2 for which 
B' > 0, and & for which B' < O. In order to visualize 
this situation, lets consider the X,3, X,4 plane in which 
D' = 0 and B' = 0 appear as curveS. For simplicity, we 
shall represent these curves by parallel straight lines. 
[See Fig. 10] 

The region Rl contains B' = 0, and the region li2 con­
tains D' = O. The naturally harmonic PSST may be 
mapped to the naturally orthogonal PSST which is 
covered by the four coordinate patches lip!!:;., liz, 
and & and for which the metric is given by 
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------+---+---r'-------- x,3 

FIG. 1. The region B is R2n ~1> A is the region Rj(i R2 and 
the region e is ~n ~I' By their definition, the regions A, B, 
e do not contain the curves'D' = 0 and B' = O. These are the 
overlap regions for the covering R1U~lUR2U ~2' 

dsj =A(dxlZ +dxZz
) + (C2D-1 _B) [A-2dx42 _dx3\ 

1 

(2. 24a) 

(2.24b) 

ds~ =A(dxI2 +d~2) + «(;213- 1 _D)[X-2dXS
2 -d~"J, (2.24c) 

dS~: =A(dr +dxl ) + (15 - C:z.8-1)[d~2 _A-2d;3
2

j (2" 24d) 

in the respective patches. In the overlap region A, 
ds~ is related to d;~ via the relations Xl = Xl, x2 =?, X' 

=X,3, x4=G(x,3, x,4), X-3==F(x,3, x,4), X-4=X,4 , One can ex­
press X'3 and X,4 in terms of x 3 and X4 and then XS and 
;4 may be expressed in terms of x 3 and X4. The metrics 
dsj2 and dsJ~ are Similarly related in the overlap regions 
B as are dSg,l and dSkin the overlap region C. Therefore 
if (D' == O) n (Jjl = O) == ¢, the naturally harmonic PSST is 
globally equivalent to the rather complex naturally 
orthogonal PSST (2.24). 

In the case where (D' = 0) n (B' == O)*~, the situation 
is more complicated. ConSider, once again, the X,3, 
X,4 plane and a neighborhood U of one of the intersection 
points 0 For Simplicity, we represent the curves D' = 0 
and B' = 0 by intersecting line segments in U as shown 
in Fig. 2. Note that the point P where D'=O and B'==O 
intersect is not in the orthogonal PSST constructed 
above. However, the point P is well defined in the 
naturally harmonic PSST. 

We end this section with the following remark. A 
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FIG. 2. The overlap regions for the covering R,UR 1UR2UR 2UP 
of the naturally harmonic plane symmetric space-=time are 
A=R2"R1, B=!i2nR" C"'!i2nE.l' and D=R2 n!lI' 

general C3 PSST is locally equivalent to a Cl naturally 
orthogonal PSST via its local equivalence to a Cl 

naturally harmonic PSST. 

C. The Taub form of plane symmetric space-times 

The Taub l form for a PSM is 

ds 2 =A(dxl2 + dX22 ) + B(dx32 _ dX42
), (2.25) 

where A and B are C) (say k ~ 0) functions of x 3 and 
x· only" 

A Cl naturally orthogonal PSST is locally equivalent 
to a CO Taub PSST. To see this consider the Cl naturally 
orthogonal PSST given by Eq. (2.18) and make the 
change of basis 

w3 
- adx3 + =-- b dx· ( 

D)l/2 
- B ' 

With respect to this new basis, the metric takes 
the form 

g=A(W I2 + W22 ) + [B/(a2 _ b2)](w32 _ w·2). 

(2.26a) 

(2.26b) 

(2.26c) 

(2.27) 

The new basis will be a coordinate basis provided 

aa a [(_D)1/2 ] 
ax. = ax3 B b, (2.28a) 

~ =_a [(_D)1/2 ] 
ox. ax3 B a . (2. 28b) 
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Equations (2.28) are in a form suitable for the Cauchy­
Kowalewsky theorem, however we shall manage with 
less stringent conditions than the conditions of this 
theorem. 

Write Eqs. (2.28) as follows: 

(
D) 1/2 [( D) 1/2] 

a,4 - -B b,3 - -B ,glJ =0, (2. 29a) 

b,4 _ (~D)~,23 _ [(~D) 1/2J ,30 =0, (2.29b) 

Since Band D are definite Cl functions of x3 and x· , 
(_D/B)l/2 is C l and therefore [(_D/B)1/2], 3 is Co. Hence, 
Eqs. (2.29) are a special case of the linear system of 
two first order partial differential equations discussed 
in Chap. 7 of Ref. 25. It turns out that the system (2.29) 
is hyperbolic. Furthermore, the conditions of the 
theorem which guarantees the existence of a local, 
weak, unique (corresponding to suitable initial data) 
solution are satisfied [see Chap. 8 of Ref. (25)]. 
Therefore, we are guaranteed the existence of local 
Co solutions a(x\ x·) and b(x3 , X4) of Eqs. (2.29). Since 
F and G are obtained by integration of a and b, F and G 
will also be Co functions of x3 and X4. The Jacobian of 
the transformation given by Eqs. (2.26) is 
= (_D/B) l /2(a 2 _ b2 ). The initial data may be chosen 
so that J does not equal zero. The new basis is a coor­
dinate basis and the metric takes the form 

g== ds z = A' (dx"2 + dX J22 ) + (B' /(a ,2 _ b'Z) 

X [dX'3
2 _dX,42

], (2.30) 

where the primes indicate that A, B, a, and b have been 
evaluated in terms of X /3 and X'4. 

D. Plane symmetric space-times in Petrov's form for 
conformal reducible metrics of type II. 

The metric of a PSST is conformal reducible type 
II. Petrov2l has found all the solutions to RjJ." =kglJ." 
for metries of this type. The coordinate system used 
there is 

(2.31 ) 

where H = H(x l
, X2, x 3

, x 4
), f3 = f3(x 1 

, X2), and y = y(x 3
, x4

). 

The elJ. are chosen to give (2.37) the correct signature. 
The Petrov form for conformal reducible metrics of 
type II with plane symmetry is 

ds z = A{dxl2 + dxZ2 + Bdx32 
_ dX42} , (2.32) 

where A and B are positive definite Ck (say I, ;, 0) func­
Hons of x 3 and X4 only. Now we set up the equations 
which must be solvable if a naturally orthogonal Cl 
PSST is locally equivalent to a PSST with metric given 
by (2.32). 

Write the naturally orthogonal Cl PSM as follows, 

ds z = A {dX 12 +dX22 + Bdx32 + Ddx42 } . (2.33) 

The change of basis 

Wi == dxl
, w2 == dx2 

, 

(
D) 1/2 

w3 =adx3 + -B (ab/..} B + b2 )dx4, (2.34) 

( 
D)1/2 

w4 =bdx3 + -B ..}B+b2 dx', 
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brings the metric to the desired form 

(2.35) 

The new basis is a coordinate basis, provided 

oa 2: {(_D)1/2 _,} --=-,- -- (ab/vB+lr 
(lx4 ax 3 B ' 

(2.36a) 

2b (I {(_D)1/2 ~} --=- - vB+lr, 
('Ix4 ?x 3 B 

(2.36b) 

Although Eqs. (2, 36) are in a form suitable for the 
Cauchy-Kowalewski theorem, the quantities involved 
are not analytic. We instead put Eqs. (2.36) into a 
form used by Courant, 26 

w au 
-4 +M-3 +N=O, 
(lx (lx' 

(2.37) 

where 

_(a) (ab/fi3+i)2) [(-:) 1/2t) 
U - b' - N = [(_ D)] 11 2 

vB + b2 B 3 

" 

(2.38) 

(
_D)1/2 _ (_D)1/2 ~ B b/YB+b2 B aB/vB+b2 

-]1,1= 

o (_D)I/2 (~~-1/2 
- /J vB+b2 

B (2.39) 

The matrix ]),1 has a double real eigenvalue A = - (- D / 
B)I/2b/VB+b2 for real b. M does not have two linearly 
independent left eigenvectors. Courane6 has shown that 
C1 solutions of Eq. (2.44) exist when ;''vI and N are C1 

functions of U, x 3, and X4 and when the matrix M has 
two real eigenvalues and two linearly independent left 
eigenvectors. However, the problem we are considering 
violates these conditions. 

The problem of determining the conditions under 
which a naturally orthogonal PSST is locally equivalent 
to a PSST with metric given by (2.38) is essentially 
the same as determining the conditions under which 
there exist a solution of Eq. (2.37) where U, M, and 
N are given by Eqs. (2.38) and (2.39) such that 
J=a(_D/B)1/2B/vB+b 2 *0. 

3. LOCAL TYPE CLASSIFICATION FOR PLANE 
SYMMETRIC SPACE-TIMES 

In Sec. 4 we will consider the problem of the local 
equivalence of two given PSSTS. The following local 
type classification allows one to distinguish three local 
types of PSSTS. 

Consider the PSM given by Eq. (1. 3) along with the 
inequalities (1. 4). For admissible transformations 
[Eqs. (2.3)] we have 

1622 

A'(X'3, X,4) =A(x3 , X4), 

ax z oxm 

g;j=iL~'j 2x,jgzm, i,j,l,m=3,4. 
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(3.1a) 

(3.1b) 

Note that A is a scalar function with respect to admiss­
ible transformations. Restricting ourselves to admiss­
ible transformations, the quantities 

v = ilA 
" rx" 

are the components of a vector and 

(3.2) 

V"V" = {D(~:3r -2CU~) U~) +B(:~r}A-\ 
(3.3a) 

A::oHD_C2
, (3.3b) 

is a scalar, which depending on A, B, C, and D, may be 
greater than, less than, or equal to zero. We 
shall say that a PSST is respectively type I, II, III if 
V"V" is greater than, less than, or equal to zero. 
This is a local cl2.ssification as a PSST may be of mixed 
type over a large domain. 

Most of the PSSTS discussed in the references given 
in the Introduction admit an extra Killing vector ~" 
for which e=0=~2. When this is the case, Killing's 
equations imply that e and ~4 are independent of Xl 

and x2 that 

A,3C +A,4~4 = O. 

Suppose that A,4 * O. In this case 

~"~Il = (e)2{DA~3 - 2CA,3A ,4 + BA~4}/(A~4). 

Comparing Eqs. (3.3) and (3.5) we see that 

V"V" = [(A,4)2/(A(e)2H"~". 

(3.4) 

(3.5) 

(3.6) 

From Eq. (3.6) if a PSST admits an extra Killing 
vector ~" for which e = 0 = e, the type is I, II, III if 
~" is respectively timelike, spacelike, null. 

4. LOCAL EQUIVALENCE OF TWO PLANE 
SYMMETRIC SPACE-TIMES 

Suppose that one has the general solution to Einstein's 
field equations with plane symmetry. This solution 
generally consists of a class of solutions depending on 
some arbitrary functions and constants of integration. 
At this point one is faced with the problem of determin­
ing the subclass of solutions which cannot be obtained 
from one another by a coordinate transformation. The 
general problem of the equivalence of two given 
symmetric quadratic forms is discussed in Eisenhart. 27 

We shall follow the outline of Eisenhart's discussion. 

Let ST(g) be the class of all solutions to Einstein's 
field equations for a PSM g and energy-momentum 
tensor T. Consider SlT(gl) and S2T(g2) E. ST(g). gl and g2 
will have the general form (1. 3). We have shown that 
every C3 PSM is locally equivalent to a C l naturally 
orthogonal PSM. In the following analysis we will 
assume that gl and g2 are at least C3 so that we may 
use their local naturally orthogonal form. This involves 
a slight loss of generality since the results will not 
apply to C2 and C 1 PSMS. 

Suppose that we have determined that gl and g2 are 
locally of the same type. Then 

2 2 3 2 42 dsi=A(dx l +dx2 )+Bdx -Ddx , (4.1) 
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(4.2) 

If there is an admissible transformation of the form 

x 3 = F(x", X,4), 
X4=G(X'\ X,4), 

(4.3a) 

(4.3b) 

(4.3c) 

such that ds~ = ds~, then the space-times are locally 
equivalent. That is, if the nonlinear first order 
equations: 

(4.4a) 

B(F G) (!F)Z _ D(F G)( oG )Z = B'(X,3 X,4) (4.4b) 
'(lx,3 'ex,3 " 

B(F G)(2F)2 -D(F G)(~)2 =_D'(X,3 X'4) (4.4c) 
'(lx,4 'oX'4 " 

B(F,G)(o,~~)(a~~) -D(F,G)U>;~3)(il~~4) =0 (4.4d) 

have solutions, the two space-times are locally 
equivalent. 

If we use the notation 

ClG ( e---- ax,3 

f= a:~ \ 
. oA' ~ 1--- ax,3 , ' (lA' 

j = OX,4. 

(4.5) 

and provided g* 0, we can differentiate Eq. (4.4a) and 
reduce Eqso (4. 4b)-(4o 4d) to 

(Hh Z _~D)e2 - 2iBhe + (BiZ -~B}) = 0, 

(Bh 2 -~D)F - 2jBhf+ (B/ +~D})=O, 

(Bh Z 
- g2D)ef - iBhf - jHhe + Bij = O. 

(4.6a) 

(4.6b) 

(4.6c) 

Once e and f have been determined as solutions of Eqs. 
(4.6), a and b are given by 

a= (i -lw)/g, 

h = (j - hj)! g. 

(4.7a) 

(4.7b) 

Equations (4. 6a,b) are quadratic equations for e andf 
respectively. Their solution may be analyzed in terms 
of two cases: (1) Bh2 _g2D* 0 (£;1 andg2 are type I or 
II) , (2) Bli Z _g2D=0 WI andg2 are type III). 

Case (1): HI!" _g2D* O. Equations (4. 6a,b) yield 

e = [mh ± {(iBh)2 - (Bh 2 
- ~D)(Bi2 _ g2B'JP/z]I(HhZ _ g2D) , 

(4.8) 

f=[jBh± {(jBh)2 - (Bh 2 -~D)(BF +~D')P/2]1(Blz2 -~D). 

in order that e and f be real, the quantities (i B') and 
(j,D') must satisfy , 

(i,B')'" (iBh)Z - (Bh2 -,.rD) (Be -~B') ~ 0, 

(j,D')", (jBh)2 - (B1z 2 -~D)(BF + g2D'):? O. 

Finally Eq. (4. 6c) gives us 
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(4,9) 

_ijg2BD +[±.j(i ,B')][±.jj,D' ]=0. (4.10) 

Equation (4.10) was obtained by differential iteration of 
Eq. (4,4a) and therefore Eq. (4.10) must be satisfied 
simultaneously with Eq. (4.4a). If these two equations 
may be solved for F and G as real functions of X,3 

and X,4 then the space-times are locally equivalent. 
On the other hand, if these two equations are not 
compatible the space-times are not locally equivalent. 
It might occur that Eq. (4.10) is satisfied identically 
as a result of Eq. (4.4a). If this is the case we must 
integrate Eqs. (4.8). These equations are of the form 

aG H (F G ;3 '4) aG H (F G ,3 '4) iJf'l = I , ,x ,x , ~ = 2 , ,x ,X , 
x x (4.11) 

where HI and Hz stand for the right-hand sides of Eqs. 
(4.8). The integrability conditions are 

aHI _ aH2 , (JH3 _ aH4 , (4 1 ) 
iJx,4 - ax,3 OX,4 - ax,3 • 2 

where H3 and H4 are the right-hand sides of Eqs. (4.7). 

Note that the H's may vary implicitly with respect to 
X,3 and X'4 through F and G. a, b, e and f will appear in 
Eqs. (4.12) and may be eliminated from these equations 
via Eqs. (4.7)-(4.8). Therefore, Eqs. (4.12) are of 
the form 

(4.13) 

Equations (4.13) must be satisfied simultaneously with 
Eq. (4.4a). If these equations can be solved for F and 
G as functions of X,3 and X,4, the space-times are 
locally equivalent. If these equations are not compatible, 
the space-times are not locally equivalent. However, 
once again Eqs. (4.13) may be satisfied identically as 
a result of Eq. (4.4a). If this is the case we are left 
with the problem of determining if soluti;ns exist for 
the over determined system of four quasilinear first 
order partial differential equations (4.7) and (4.8). 

Case (2): Hh 2 - g2D = O. Then 

- i 2D' + PH' = 0 

which is just the condition that gz be type III and there­
fore tells us nothing new. However, the integrability 
conditions will once again lead to equations of the form 
of Eqs. (4.13). 

The above analysis is not valid if g= O. If this is the 
case, the analysis may be repeated for Ii * O. If g'= II = 0 
A is a constant and none of the special results obtained ' 
above are valid. However, this does not involve too 
great a loss of generality since none of the PSSTS 
discussed in the references given in the Introduction 
have A = constant. 

SUMMARY 

The major thrust of the above analysis was to examine 
some of the kinematical aspects of PSSTS. The major 
result was the discovery that the special forms of 
PSMS, harmonic and orthogonal and some of the special 
orthogonal forms, are not really general forms for a 
PSM, Given a Ck PSM in the form of Eq. (1. 3), there 
is no guarantee that the special forms discussed in part 
(2) exist if lc "" 1. If lc == 2, the naturally harmonic and 
naturally orthogonal forms exist only in a weak sense and 
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and there is no guarantee that the Taub and Petrov forms 
exist. If /, = 3, there is no guarantee that the Petrov 
form exists. Of course, if the given PSST is analytic, 
the Cauchy-Kowalewski theorem guarantees the 
existence of each of the forms discussed in Sec. 2. 
As an example of where this result may be significant, 
consider a C l

- PSM in the form of Eq (L 3). As 
pointed out by Hawking and Ellis, 21 the examples of 
Choquet-Bruhat and Penrose, Israel, Papepetrou, and 
Hamoui show that this metric may describe a physically 
interpretable discontinuity. There is no guarantee that 
this discontinuity will appear in one of the special forms 
for a PSM discussed in Sec. 2. 

One can distinguish three local types of PSSTS via the 
intrinsic local type classification given in Sec~ 3. 
Under certain conditions the existence of an extra 
Killing vector is correlated with the type classification. 
Finally, if one has a class of solutions of the field 
equations with plane symmetry, one must face the 
problem of finding the subclass of solutions which 
cannot be related to each other by coordinate transfor­
mations. The analysis of Sec. 4 may greatly simplify 
the solution of this problem. 
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Characterization of certain stationary solutions of Einstein's 
equationsa) 

D. M. Chitre 

Department of Physics. Montana State University. Bozeman. Montana 59715 
(Received 23 January 1978) 

A scheme is proposed to characterize Tomimatsu-Sato solutions of Einstein's equations. It categorizes an 
infinite series of solutions, the lowest (nonflat) members of which are the Schwarzschild solution for the 
static case and the Kerr solution for the stationary case. 

Einstein's equations for stationary, axisymmetric 
systems give rise to an infinite sequence of potentials, 
which are then used to write down infinitesimal trans­
formations to generate new solutions. 1 So far, it has 
not been clear how this formalism relates to the known 
stationary, axisymmetric solutions, like the Schwarz­
child or the Kerr solution. Furthermore, Tomimatsu 
and Sat02 found more such solutions, characterized by 
a certain distortion parameter 0, 6 being the parameter 
classifying a series of the Weyl metrics. Since, 6 can 
take any positive real value for the Weyl metrics, it has 
been a puzzle as to why the TS solutions should exist 
only for the integral values of <5. 

We will show here that there is an intimate connection 
between the hierarchy of potentials and the TS solutions. 
We will characterize the solutions by algebraic relation­
ships among the potentials, which, then necessarily give 
only the integral valued Weyl solutions for the static 
case and should give the TS solutions for the stationary 
case. 

We start with Einstein's field equations as written 
down by Kinnersley. 3 We take the metric of the form 

dS2=fABdxAdxB - exp(2r) 6\fNdxM dx N, 

A,B=1,2, Al,N=3,4, 

where fA B' r are functions of x 3
, X4. 

We have 

where indices are raised and lowered using fAB = ± 1. 

The Einstein field equations imply the existence of 
potentials qJAB such that 

Vi}JAB = - p-'fA
XV fXB' 

where V and V are the two-dimensional gradient 
operators 

V=(r 3 , ( 4 ), V=(il 4 , -(l3)' 

Analogous to the Ernst4 formulation, the complex 
combination 

(1) 

(3) 

(4) 

HAB=fAB + i<PAB (5) 

satisfies 

VHAB=-ip-lfAxVHxB' (6) 

It was shown5 that these field equations imply the 

a)Work supported in part by the National Science Foundation 
under Grant PHY76-12246. 

.+1 
existence of an infinite heierarchy of potentials HAB , 
which obey the following field equations: 

(7) 

.+1 

where HAB is constructed from lower order potentials 
as 

nti In n 

HAB =i(NAB +HAXHXB), (8) 

where 
I. • 

VNAB =H~A VHxB• (9) 

The hierarchy is constructed starting with 11 = 1, with 
1 

HAB ", HAB • 

(Notice that the hierarchy of potentials is defined only up 
to a constant. We would use this gauge freedom, when­
ever necessary. ) 

It was also observed5 that these higher potentials when 
computed for the flat spacetime were related to each 
other by certain algebraic equations. The same was 
noticed6 to be true for the Schwarz schild case. We will 
see here that one can write down a general scheme 
classifying the solutions according to one algebraiC 
relationship among the potentials, 

Appropriate field equations given in (7) can be 
combined to give 

n""l n ....., n+l n 
V(iHu - H12 )= - ip-11J12 V(iHll -HI2 ) 

-- n+l n 

- f11 V(iH21 - H22 )], 

and 
n+l n 

V(iH21 - H22 ) 
....., n+l n __ n+l n 

= - ip-l[j22 V(iH11 - H 12 ) - f21 V(iH21 - H2Z )], 

which imply that 

if and only if 
n+! n 

iH21 =H22 • 

(10) 

(11) 

(12) 

(13) 

Taking the gradient of Eq. (8) and using Eq. (9), one 
obtains 

n+2 n+l 

V(iHll -HI2 ) 
n+l n n+l n 

= i[ (Hll + Htl)V(iH21 - H22 ) - (lP,1 + H1Z )V(iH11 - H12 ) 
n+l n "+1 n 

+ (iHZ1 -H22 )VHll - (iHll -HI2 )VHI2 ] (14) 

and 
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"+2 n+l 

V(iH21 - H 22 ) 
n+1 n n+l n 

= it (Hi2 + H2JV(iH21 - Hz,) - (H;z + H22 )V(iHIl - H1Z ) 
n+1 n "+1 n 

+ (iH'l -H,Z)VHZ1 - (iHlI -H I2 )VH2Z ]' (15) 

It follows from Eqs. (12), (13), and (14) that if 
ni-l n 

ill11 = HIZ (16) 

for some value of n, then it would hold good for all 
higher values, also. 

We classify our solutions by the above single 
(complex) algebraic condition. Thus, the lth order 
solutions are characterized by the fact that l is the 
lowest integer for which Eq. (16) is satisfied. 

We find that, for the static case, the Weyl solution 

(, -1)' 
III = X + 1 (17) 

is the lth order solution in our classification, where x 
and yare prolate spheroidal coordinates. For example, 
for l = 1, the metric is the Schwarz schild solution, 
where the unit of length is chosen to be mass, m. A 
simple computation gives 

2 I 

iHll = 2i(x - l)y =H1Z ' (18) 

For I = 2, the relevant higher potentials are 

1 22(x-lf(x+2)y 
H12 =2i(xy-2y), Hll (x+1)2 

3 HI2 = i(x _1)2(6yZ - 2), Hll = (x - 1)Z(6y2 - 2), 
(19) 

showing that the condition (16) is satisfied for 1 =2. 

For the stationary case, one finds that the Kerr 
solution satisfies equation (16) for n = 1, i. e., one can 
choose a suitable gauge in which the appropriate 
potentials are 

pZxz + qZyZ _ 1 2qy 
III (px+1)z+q2l' Wu (px+ 1)2 +q2y2 

2q[x(1 _ :}'Z) + p(x2 _ y2)] 
112 = (px + 1)2 + q2yZ ' (20) 

2y[ (px + l)Z _ q2] 
<Ji Zl = - p[(px + l)Z +q2/] , 

and 
2 I 

iHll = HI2 (=/12 + iiJ!Zl + 2ixy) 

Since the Weyl solutions given in Eq. (17) are the static 
cases of TS solutions, it is evident that the higher order 
stationary solutions in our classification scheme should 
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contain the TS solutions; a straightforward (but rather 
tedious) calculation to show thal it is indeed the case 
will be done elsewhere. 7 

The question arises as to what, if any, are the solu­
tions other than the TS solutions, which fall in our 
classification scheme. Let us restrict ourselves to the 
simplest possible case. i. e., the static n = 1, case. 
Using Eq. (3), one can show that the condition 

Z 1 

iHll = HI2 

reduces to the following two equation: 

w - 1) (x ~ - ~) = e(! ~ -y~) ax y oy oy 

and 

where 

S =/11 + 1 
1 -Ill 

(21) 

(22) 

(23) 

It is quite clear that ~ = x or ~ = y satisfies Eqs. (21) and 
(22). The most general solutions of these equations are 
given by 

and 

[~ e -1] F -, -- =0 
X yZ_1 

G[~ i:,Z-lJ-O y'x2 _1-' 

(24) 

(25) 

where F and G are arbitrary functions. It is not clear 
whether one can find suitable forms for F and G such 
that one can produce a solution for ~ which is neither 
x nor y. 
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From complete resolution of a cohomological equation determining the I-cocycle of an extension of one 
mass·null scalar representation by a vectorial mass·null representation of the Poincare group, we build a 
one-parameter family of inequivalent noncompletely reducible representations of this group. Each of them 
leads to a quantum field theory by the Fock quantization process to a description of the electromagnetic 
field which turns out to be identical with field theories built by others in the general framework of the 
generalized Lorentz gauge. 

INTRODUCTION 

In the Gupta-Bleuler formulation of Maxwell's theory 
a noncompletely reducible representation Uo(a, A) of 
the Poincare group P is basically used. 

This representation is realized in a space of 4-
components function CPIJ. (k), /1 = 0,1,2,3, defined on the 
future cone C •• If we introduce the "variable" 

and eliminate, for instance, 
least formally 

CPo(k), we can write at 

U ( A) = I V(a, A) o a, 0 
To(a, A) W(a, A) I 

W(a, A) , 

where: 

(1) 

(2) 

(1) V(a, A) is a representation of P realized in some 
space E of three-component functions of C+, according 
to 

(V(a,A)cp)i(k)=exp(ia'k) (A/_A;O tr:l~~) cpj(A-1k), 

kEC., (3) 

(2) W(a, A) is a representation of P realized in the 
space F of the w(k) according to 

W(a, A) w(!?) = exp(ia' k) w(A-11?). (4) 

(3) To(a, A) is a column operator mapping F into E 
according to 

( ) 
0 w (k) 

To(a,A)w;(k)=A i iA-1kl' 

Here we understand that Latin indices go from 1 to 3 
and Greek from 0 to 3. 

(5 ) 

Obviously, To(a, A) is a solution of the cohomological 
equation 

T«at. A1)(a2, A2) = T(a, AI) + V(alAl) T(a2, A2)W(alAl)-t, (6) 

which ensures that (2) is actually a representation. It 
is the equation determining the so- called one- cocycle 
of extension of representation W by representation V, 

T(a, A) E Zl(W, V). 

Up to now, nothing has been said about the topological 
structure of E and F. To avoid difficulties associated 
with the vertex of the cone, we shall take for F the 

space of Cro functions with compact support on C. and 
for E the space of functions with components in F. We 
assume that T(a, A) is a continuous mapping from F 
to E depending continuously on (a, A). Then each solu­
tion of Eq. (6) gives rise to a continuous representa­
tion of P in E + F. Some of them are proper to a field 
quantization process leading to eventually distinct 
descriptions of the quantum electromagnetic field. Our 
paper is devoted to a comprehensive study of the solu­
tions of (6) in this framework, and of their applications 
in field theory, especially with respect to the resulting 
gauge condition and the form of the field equations. It is 
somewhat noteworthy that the description of the elec­
tromagnetic field in Laudau gauge (d. Refs. 1 and 2) 
is obtained as a special case of our general 
construction. 

1. RESOLUTION OF (6) 

It will be convenient to identify F with the space 
LJ o(:R3) of Cro functions on IR3 with compact support, 
turning to zero in a neighborhood of the origin. LJ o(:R3) 
provided with the topology induced by the usual topology 
of LJ(IR3) is a nuclear space. Therefore, to each com­
ponent of T(a, A) we can associate a distribution 
kernel Ti (a, A; k, k'h:: (LJo(:R3):5 LJ O(IR3)' with the proviso 
that (cf. Ref. 3) 

f dk'Tj(a, A; k, k') cp(k') (7) 

is inLJo(:R3) when cp(k) is inLJo(IR3). (We choose the 
symbolic notation common among the physiCists and we 
use the measure elk instead of the invariant measure 
on C+ in order to enjoy the usual distribution 
properties. ) 

Concerning the elements in LJo(:R3)~ LJ O(IR3), we 
further need the following technical lemma: 

Lemma 1: Let cp(k,k')ELJo(:R3)0LJo(:R3) with support 
in the domain 

E<lkl<A, E<lk'I<A, O<E<A<oo. (8) 

We can write 

cp(k, k') = ~ [1 - jj (k ~k') ] <Pi (k, k') + <po(k, k'), (9) 

where CPo(k, k') an'l <Pi (k, k'), i = 1, 2, 3 are in LJ O(IR3) 
~ LJ o(IR3), and the Ii (r), i = 1, 2, 3, are Fourier trans­
forms of functions in LJ(IR3) such that (1- ji (k) is dif-

1627 J. Math. Phys. 19(7), July 1978 0022·2488178/1907 ·1627$1.00 © 1978 American Institute of Physics 1627 



                                                                                                                                    

ferent from zero when 0 < lk k 1 and proportional to k; 
in a sufficiently small neighborhood of the origin. 

Proof: Let a(k) be a Coo function such that 

a (k) = 1, I k I ,c: L 
a(k)=O, Ikl> 1. 

Then 

is in LJ O(IR3) (>9 LJ oOR3). The difference cp(k, k') 

(10) 

- CPo(k, k') is zero when k = k'. Therefore, we can find 
lPi(k, k') in LJ o (IR3) (>9 D oOR3) [and support in (8)] such that 

tP(k, k') = ~ (1<i - 1<0 lPi(k, k') + CPo(k, k'). (11) 
• 

Now let fi(X), i=1,2,3, be three functions inLJ(IR3) 
with Fourier transforms such that 1-i; (k) is different 
from zero when 0 < Ik I '" 1 and proportional to h; in a 
neighborhood of the origin. Then we can write 

<p(k, k') = 1: [1-i; (k ;/,) ] 1P; (k, k') + CPo(k, k'), 

where the functions <P; (k, k') are defined by 

1P; (k, k') = Il; - h: /~ - j; (~;Ak')] lPf(k, k') i = 1, 2, 3 

are obviously in LJ O(IR3):>9 LJO(IR3) [and support in (8)]. 

We now solve (6) step by step. 

Proj)osiiion 1: T;(o,U;k,k') has the following form, 

Ti (a, U; k, k') = (iip (k) aP6(k, k') 

+ [1- exp(ia. (h -I?'»] f;(k, k'), (12) 

where (3;p(k) are COO functions outside the origin and 
f;(k, k') is an element of (LJo(IR3)cs LJ O(IR3»' and applies 
LJ o(IR3) into itself. 

Proof: From (6) results 

[1 - exp(ia'(h - I?'»] T; (a, U; k, k') 

= [1 - exp(ia. (I? - h'»] Ti (a', ll; k, k'). (13) 

If f(x) is in LJ(IR3) with Fourier transform equal to one 
at the origin, we get from (13) and the continuity in a 
of Ti a, U; k, k') 

(l-(k - k'» Ti (a, ll; k, k') 

= [1 - exp(ia.(l? - h'»] J da'j(a') T/ (a', It; k, k'). (14) 

Let us denote by LJ"A(IR6) the space of Coo functions 
on IR6 with compact support in the domain (8). If 
cp(k,k') is inD"A(IR6), using (14) and (9), we get 

JT;(a,n:;k,k') <p(k,k')dkdk' 

= (ZA)3[1 - exp(ia. (k - 1?'))]6 dk dk' ~'j (a, H;k, k') 
j 

x J Qa'jj (ZA a') T/(a' I; k, k') + J cp(k, k) dk 

x J dk' Ti(a, H;k, k') [1- a (~)] a (:~) 
By assumption 

f dk' T; (a, I; k, k') [1- a (~')] a (~) 
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is in LJ o(IR3). Furthermore, the mapping 

cp(k, k') -1P; (k, k') 

is obviously linear and continuous with respect to the 
topology induced on LJ, A (IR6) by the topology of 
LJ O(IR3) (>9 LJo(IR3). Ther~fore, restricted to LJ, A (IR6), 
Ti(a,lt;k,k') is inLJ:A(IR6) with the following'form, 

T/ (a, H; k, k') = [1- exp(ia. (k - h'»] t/ (k, k') 

+ {3/ (k, 0) 6(k - k'), (14') 

where ti (k,k')E::LJ:A(1R6) and (3/(k,a) is a Coo function 
when E < Ik I< A. But, LJo(1R3):>9 LJ O(IR3) is the inductive 
limit of the spaces LJ, A (lR6) when E - 0 and A - 00, and 
therefore (LJO(IR3) (>9 LJ O(1R3» is the projective limit of 
the spaces I): A (IR6

). This easily implies the validity 
of (14') for any cp(k, k')E: LJ o(IR3) 0LJo(1R3) but, this time, 
t/(k,k')E: (L)o(1R3)@LJO(IR3», and (3i(k, a) is a Coo function 
outside the origin. Finally, 

Ti(a+ a',H; k,k') = Ti(a, H; k, k') 

+ exp(z:a(h - h'» T; (a', H; k, k') 

and the continuity in a imply {3i (k, a) is linear in a. 

Proposition 2: T/ (0, A; k, k') has the following form, 

T/(O,A;k,k') 

(
. O(A-1W) IA-1k'l = t/ (k, k') - A/ - Ai I A-1k I tj (A-1k, A-1k') ~ 

+B i(A,k)6(k-k')-B;j(A,k) a~' 6(k-k'), (15) 
J 

where B;(A,k), e;j(A,k) are continuous mappings from 
SL(2,0;) into the set of Coo functions on 1R3 outside the 
origino [By definition, if T(k, k'k (LMIR3)@ LJo(1R3»" 
we denote by T(A-1k, A-1k') IA-1k'l/ Ik/l the distribution 
defined by 

f T(A-1k, A-1k') I ~~~' I cp(k, k') dh dh' 

= f T(k, k') I ~'II tP(Ak, Ak') dh dh'. 

This definition is understood in all the following. ] 

Proof: From (6) and 

we get 

[1 - exp(ia(k - h'»] T i (0, A; k, k') 

(
. (A-1h)j) 

= T; (a, H;k, k') - A/ - A/ I A-1k ! 

IA-lk'i 
x T (A-1 a I' A-1k A-1k') ---

j '" Ik'i' 

If j(a) is again a function in LJ (IR3) with Fourier trans­
form equal to one at the origin, we can write 
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f IA-1k'l 
x f(a) T (A-1a [. A-1k A-1k') --- da 

j '" Ik'i 

But, using Proposition 1 and the relation 

IA-tk'i 
o(k - k') = o (A-1k - A-tk') -ik'T 

this is equivalent to 

(1- j(k - k'» T/ (0, A; k, k') 

= f :'j (0) [i3l j (k) - (A;' - 11./
0 ~~_\~;)A/{3lp(A-1k)J 

r (. 0 (A-lk)1) x 0 (k - k') + (1 - j(k - k'»~1 (k, k') - A;' - A; TA-IkT 

IA-1k' I] 
x tj (A-1k, A-1k') Ik'T . 

We now apply this formula to the evaluation of 

f T; (0, A; k, k') 'P(k, k') dk dk' 

when cp(k, k') is in.D E,A (:rn.6) and, therefore, can be put in 
the form (9). If we notice further that 

~ _ 1- ~ ak~ (k, k) - - 2A ~j (k, k) ok
j 

(0) 

we get (15) after considerations similar to those made 
at the end of the proof of Proposition 1. 

Incidentally, we obtain the relation 

ili/} (A, k) = (3;j(k) - 11./ (11.;1 - 11./0 ~_~~;) (3lcr(A-1k). (16) 

Lemma 2: 1i;(A,k) and lil/A,k) verify the following 
cohomological equations: 

( 
(A_lk)/) 

e/(AtA2,k)=Ii/(At. k)+ (11.1)//_(11.1)1 0 IA-1kl Ii I (Ah At1k) 

(17) 

Ii /} (11.111.2, k) = Ii iJ (At. k) 

( 
(A_lkl') 

+ (11. 1)/1 - (11.1)/0 IA~lkl 

x (AI)} m - (11.1)/ ~i;tJ~) elm (11.2, A;:lk). 

(18) 

Proof: It is almost obvious from applying (6) to 
T/ (0, A, k, k') and Proposition 2, if we note that cp(k, k') 
and (0 'P/ok)(k, k') are "independent variables." 

Lemma 3: We have 

( ) k· (k. 
(3/0 k = 0 IkT - i3/j k) ikT, (19) 

where 0 is some constant. 

Proof: Let us introduce 

(20) 

and let us rewrite (16) in terms of (3lm(k) and o(k). If 
we substitute the resulting expression of li lj (A, k) in (18) 
with 11.1 = A, and 11.2 = 11.-1, we get the equation 

1629 J. Math. Phys., Vol. 19, No.7, July 1978 

(21) 

The lemma will be true if we show that the general 
solution of (21) has the form 

01 (k) = ok;, 0 being some constant. (22) 

This is the object of: 

Lemma 4: A vectorial function infinitely differentiable 
outside the origin and verifying (21) is a multiple of k. 

Proof: Let y be the point on C' with coordinates 

YO=Y3='}, Yl=Y2=0 

and let r be the subgroup of SL(2, Q;) which leaves Y 

invariant. 

Writing (21) at Y for AEr, we find 

01(y)=02(Y)=0, °3(Y) = 0/2, 

where 0 is some constant. Now 

o (k) - (11._1) 1_ (11.-1) o~) 0 (r) 
; - k I k I 11'1 1 , 

where AkE SL(2, Q;) is such that 

Ai,IY=k, k=(lkl,k). 

(23) 

(24) 

But then, the right member of (23) is precisely 5k/. 
Taking (16) into account, the lemma implies the follow­
ing expression of el}(A, k), 

. (I 0 (A-l k)l) 
lli lj (A,lk)={3ij(k)- A; -A; TA-lkl 

(
Am 11.0 (A-

1
k)m) r< (A-I) _kj 0 

X } - j TA-IkT I-'Im k - 0 TA=lkT Ai • 

(25) 

Proposition 3: e; (A, k) has the following general form, 

11.. 0 
Ii; (A, k) == X lA-:tkT 

+ (Ail _ 11./ 0 ~~~11~~) t;(A-tk) _ tiCk), (26) 

where \ is a constant and N(k) are C® functions outside 
the origin. 

Proof: As above, we take k=r, and Aj , A2E SL(2, Q;) 
in (17). We find 

li i (A,r)==2XA;0+ (11.1
1 -11.1

0 1~1-5;1) Ill' AEr, 

where X is a constant and III the components of a 3-
vector. 

Now, with Ak as in (24), we get 

Ii I (AkA, r) = Ii; (Ak , r) + ( (Ak); 1 - (Ak)/ O I~ ,) e 1 (A, k). 

Using 

AkA == (AkAA ~j-l) A A -lk, AkAA ~l_lk E r, 

we have 

Ii i (AkA, 1') = Iii (AkAA ~1_1k' r) 
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Finally, from the cohomological properties of 
(1\/ - 1\; 0 (1\ -1 Il)i /1 A-1k I) and the relation 

(1\1\-1 ) 0_ (A 1 AD (A-
I
1<)I) (1\-1 ) ° 11"1 0 

A-lk i - i - i TFkT A-ik Z + IA-1kl 1\; 

we get (26) with 

1[(k)=(1\;;I)i O+ '(A;;I)iO 1;1
1

) (}Jl+8
1
(Ak ,Y». 

Putting together all these results, we can state the 
following theorem. 

Theorem 1: T; (a, A; k, k') has the following general 
form, 

A· ° T i (a,1\;k,k')=A TA~ o(k-k') 

. k i (A ° ? "'(k k') - III 1J\-lk 1 j 2ft; v -

+ i(A-Ia)O o(k- k'») 
+ exp(ia(l1- 1<'» (Aii _ j\.0 ~~) 

t 1 A -'k 1 

Tj(A-Ik, A-Ik') - Tj(k, k'), (27) 

where ,\ and }J are some constants and Ti (k, k') are 
some distributions in (fMffi3

) b f)o(ffi3»' applying UO(ffi3) 
into Do(ffi3). 

Proof: From (6), we have 

(
, j ° (A-I!?)}) 

Ti(a,A;k,k')=Ti(O,A;k,k')+ Ai -Ai 1J\-l k' 

-1 . _I _1, IA-1k' ~ 
XTj(A a,I,A k,A k) -WI-' 

We here insert (15) and (12) and take in account (26), 
(25), and (19). If we note the relations: 

IA-Ik'i 
exp(ia(k - Il» o(A-1k_ A-ik') ---:k'T = o(k _ k'), 

2 1A-1k': 
expva(!? - e)) ok' o(A-lk_ A-1k') ~ 

J 

(
. (A -1 k)i ) 2 

A/-Alo IA-1kl iik';0(k-k') 

-i (A- 1a)i_ (A-1
a)0 ~1~:=)lj) o(k-k') 

we finally get with (27) 

Ti (k, k/) = - t; (k, k/) + t;(k) O(k - k/) 

-i(:Jij o!~ o(k-k'). 
1 

Remark: The last two terms in the right member of 
(27) turn out to be the trivial 1-cocycle generated by 
the Tt(k,k')'s. From the point of view of representation 
theory, these terms are unmaterial and are easily 
eliminated if we perform the transformation 

(<p, w) - (<p + Tw, w), 

where T is the operator from E to F corresponding to 
the distribution kernels Ti(k, k/). Therefore, in the 
following, we are concerned only with the first two 
terms in the right member of (27), so that we are 
finally faced with a two (complex) parameter family 
of representations of the Poincare group, written 
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<PiCk) (a,h!..exp(ia.l?) (A/ - A/ t~~)lj) 'Pj\A-1k) 

+,\ i\} (A-1k) . hi (AO C w ( 1 
IA-1kl W -1.!likT I ?/?Z A- k) 

+ iaow(A-1k») (28) 

w(k) (a, A.!... expCia.k) w(A-1k), (28) 

where <Pi (k) and w(k) are in f)oOR3), 

2. CONTINUOUS INVARIANT SESQUILINEAR FORM 
AND EQUIVALENCE 

Let us assume A * O. Then, w(k) in (28) can be re­
placed by a "variable" <Po(k) such that 

w(k) == ~ Ie" <p" (k), Ic D = Ik I 

and with 

~(k) co: h" <p" (k), 

we get the following form of (28), 

<p" (k) (a, 10. exp(ia.k) {A" v <p)A-1k) - i r fki 

x (\0/ ~~I (A-lk)+iaD~(A-lk»)~, (29) 

i. e., a representation realized in the direct sum L of 
four spaces Do(lR3

). It is clear that the representations 
with the same value of Il/A are equivalent. We put in 
the following d = ill/A, the corresponding representation 
being denoted by Vd(a, A). 

If Bd,i'(<P, <p') is a nondegenerate separately continu­
ous sesquilinear form invariant when Vd(a, A) acts on <p 
and Vd.(a, J\) acts on <pI, we can state the following 
proposition. 

P1'oposition 4: Bd,d' (..p, <p') exists only if d' =:; d, and 
then it is written 

f dk-
+ b Ik IrI'(k) n(k), (30) 

where a and b are some constants and a'" O. 

PrOOf: From our assumption, we can write 

Ba,"'(<p, <pI) = f ~r(k) B"V(k, k') "p".{k/) dk dk/, 

where B"v (k, k/) EO: Wo(JR3) 0 Do(ffi3))' • 

The invariance with respect to spatial translations 
implies 

From the invariance with respect to time translation, 
we get 

kpbP"(k) = ~, k"t3(k), t3"P(k)kp=~ k"!3(k), !3(k)EO:DO(JR3). 

(31) 
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The Lorentz invariance is expressed by 

b""(k)=A"A"bPO(Ak) IAkI +It"k"Ao _0_ {3(Ak,) 
p ° Ikl ' ok, Ikl 

which implies 

I k I {3(k) == I Ak I {3(Ak). 

Therefore, since {3(k) E Do (rn.3) , we get 

{3(k) == {3/ Ik I. 

(32) 

From this, we deduce the following general solution of 
(32): 

b""(k)= I~I (-ag ""+bk"k"+{3 ~~~). 
Now, (31) gives the relation 

{3 =::: - ad' == - ad. 

Therefore, d == d' and we get (30) with (3 == - da; a * 0 
expresses the nondegeneracy. 

Corollary 1: There exists a nondegenerate sesquilin­
ear form invariant with respect to Ud(a, A) if and only 
if d is real. Its general form is given by (30). 

Corollary 2: The representations Ud(a, A) and Ud,(a, A) 
are equivalent if, and only if, d = d'. 

Proof: If U.(a, A) and Ud.(a, A) are equivalent, we 
have 

Ud(a, A)A ==AUd.(a, A), 

where A is an invertible continuous operator on L. 
Therefore, B-a d(rp',Arp) is a nondegenerate, sesquilin­
ear form inva~iant with respect to UtiCa, A) and U,1,(a, A), 
and from Proposition 4, d' ==d. 

3. INTERTWINING OPERATORS 

As we explain later, we need for the quantization 
process an intertwining operator between Ud(a, A) and 
the following representation of P, denoted U (a, A); 

f" (k) (a,~ exp(ia.k) A" "fv(A-1k), kE lR4 

where by assumption eachf,,(k) is in Do(lR4). [We post­
pone to the next section a discussion about this choice 
of the space of test functions, instead of S(rn.4).] 

We begin by looking for a separately continuous 
sesquilinear form Bd(rp,j) invariant when Ud(a, A) is 
acting on rp and U(a, A) is acting on f, We can state 

Proposition 5: For any d, there exists Bd(rp,f) given 
by 

Bd(rp,j}==a f ~I rp,,(k) [f"(lkl,k)-d Ir, ~~o (Ikl,k)] 

+ d f~ w(k)n(lk~ 
a Ik 1 Ik 12 

+b f :1 w(k)n(lkl,k), (33) 

where a, b are some constants and 
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Proof: As before, to Bd(rp, f) correspond distribution 
kernels B"" (k, k') E (DO(rn.3)0 DO(rn.4»,. From the in­
variance with respect to space-time translations and 
proceeding as in the proof of Proposition 1, we first 
get: 

Bd(rp, f) = f dkrp,,(k)a""(k)f"(lkl,k) 

-f dkrp,,(k){3""(k) ~(Ikl,k), (34) 

where 

(35) 

The Lorentz invariance is expressed by 

A '" A vapa(Ak) 1 AI< 1 + d k" AO ~ (Ak)p a
P°1.Ak) A v 

P a Ikl lokI Ikl a 

== a"V(k) (36) 

which implies 

(Ak)papO(Ak)Aa" I~I ==kpaP"(k). (37) 

Since kpaPf' (k) is in D6OR3
), the general solution of (37) 

is 

Substituting in (36) and observing that when some 
distribution T""(k) inD6ORS) verifies 

A/ A:Tpa(Ak) == T""(k), 

then it has the general form 

T""(k)=ag""+bk"lf, a, b, constants. 

We finally get [0' =a from (37')] 

,",v _ g"V _ 1/' I?" - k"gVO k"k" 
a (k) - a TkT + ad TkP - ad lW + b lkT . 

We get (33), after substitution into (34). 

(37') 

Corollary 3: For any real d< co, there exist inter­
twinning operators n between Ud(a, A) and U(a, A). They 
have the general form 

(IIf),,(k)=a(f,,(lkl,k)-d ;~I ~~o (Ikl,k») 

+ (3k"n( Ikl, k), 

where a, (3 are some constants and Q(k) == kP fp(k). 

(38) 

PrOOf: Let n be an intertwining operator between 
Uia, A) and U(a, A). If Bd,d(ep, ep') is a nondegenerate 
sesquilinear form invariant with respect to U<t(a, A) and 
Ua(a, A), then Bd,aWf, rp') is a sesquilinear form invari­
ant with respect to U(a, A) and U<t(a, A). Using (33) and 
(30) we get (38) after a trivial identification. 

4. QUANTIZATION PROCESS 

In this section, we show that, for any d real and 
finite, we are able to build a field theory of the electro­
magnetism where the representation of the POincare 
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group is generated by Ud(a, 1\) and where Maxwell's 
equations are valid only in a restricted sense as in 
Gupta-Bleuler theory (see also ReL 1). 

We first build the space 7, the elements of which are 
vectors iJi with components U'~"t; •..• ,,"(kl1"" kn ) in the 
nth tensorial power of DO(IR3), depending symmetrically 
on k;, {1; and vanishing for II ",V(\T/) , We extend to 7 
the representation Ud(a, 1\) in the usual way and define 
on) a Hermitian nondegenerate invariant form 
11d (m, \lr), 

Ad (,!" \1') 

=E(-l)n f/:~ f:;;, \It~~:""n(k1> •.. ,kn) 

n (",v. l/il/j) () 
x },\ g J J +rli'k}t mv~ •.• ,.vn(kl" 0, ,k,,). 

For each ',0 in L, we define (1+( cp) on 7 by 

(II+(CP) \ll~~:""n(kl"'" kn) 

1 n 

= ,-Ii E :P"j(k)\ll~~;:;""j""'''n(kb ... ~kj,''''k,,) (40) 

and a(cp) by conjugation with respect to Ad(<T>, \lr), 

(41) 

In the following, we introduce, as usual, a" (k) and 
a+"(k) such that, symbolically 

a(ep) = I a" (k) ep/J. (k) dk, a+(ep) = I a''" (k) ep/J.(k) dk. (42) 

If now t" (x), x''=: IR\ {1 = 0,1,2,3 are real functions 
with Fourier transforms f" (k) in DoORI), we define 
the vector potential field A/J. (x) by 

AU) = I A/J. (x)1;" (x) d1x = 1I+(n() + a[fi]), (43) 

where 

(44) 

with ~(I.') = k P (p(I,,). 

Since n is an intertwining operator between iJ (a, A) 
and Ud(a, A), it is clear that under the action of 
Poincare group, we shall have 

A" (x) (a, "l (1\ -l),/Av (Ax + a), 

i. e., the vector potential field is a true vector with 
respect to the Poincare group. 

ProjJOsilion 6: Let B(x) be the scalar field defined by 

B(t) = i .~.=: c. dk(l?/J. a+/J. (k) 1(1,,) - 1<" a" (k)t(l<)), (45) 

where t is a real function on lR4 with Fourier transform 
in DoCffi4). Then we have the following field equations: 

(46) 
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(1/J. A" (x) = (1 - 2rl) B(x). (47) 

PyoO(: By definition of A/J.(x) as operator distribution, 

I {i A" (X»('L (x) d'l x 

= j il" (x)r~ (x) rl4x, (~(x) = If" (x). 

But 

(117')" (k) = 2 (il-:" ~(I k I, k), Mo = I k I. 
From (44) and (45), we get (46). Similarly, we have 

i)/J. A" (f) = - A(('), r~ (x) = 2"f. 

But, with j(l.') in Do(lR1), 

(II (I)" (k) = - i(l- 2d) 1.',,{(lkl, ko = Ikl. 
(47) now results from (44) and (45). 

Coyol1al".I' 4: The electromagnetic field F"v(x) verifies 
the following field equation, 

(48) 

Proof': It is obvious from the preceding proposition 
and 

F~v(x)=(l"AJY)- i1vA." (x). 

Let us define the subspace 7' of the physical vectors 
as the set of \11 in 7 such that 

1.'~ aIL (k) \Tr == O. 

It is readily seen that Bd (<T>, \T/) is nonnegative on ]'. 
Furthermore, from the commutation relations between 
a" (k) and a+;J. (k), we easily deduce that 

Bd(B(f) <T>, \[I) =0 

for any <T>, \TIC: }'. 

Thus Maxwell's equations are valid in mean on ]' . 
The same holds for the Lorentz condition, except when 
d == ~ where we get a true operator equation correspond­
ing to the Landau gauge. Obviously, the true physical 
space is the quotient 7'/7" where]/I is the kernel of 
/!d(<T>, \[I) restricted to )' [see also (I)}. It turns out that 
this quotient does not depend on d and must be identified 
with the Fock space built only on the transverse compo­
nents of the vector potential field, 

But if the field theories we have obtained substantial­
ly have the same physical content as Gupta-Bleuler 
theory, nevertheless they display some unusual fea­
tures. In particular, the Hamiltonian cannot be diag­
onalized and the vector potential field increases linear­
ly with the time. Indeed, let us introduce 

1J"(k) = (.l;;J.v_ q ;~;c;) riv<k) , (49) 

b '" (k) = ("" v - q 't~rf~) a~ (k) (50) 

with commutation relations independent of d, 

(51) 

Then we have the following proposition. 

Proj)()silion 7: The spatial impulsion operators and 
the Hamiltonian respectively have the following forms: 
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P;=- f /k/elkk;b'''(k)b,,(k), i=I,2,3, (52) 

Po = - f elk Ik 12 (b'" (k) b" (k) + I~ I (krp(k») 
kc C + 

Proof: By definition 

(P; '¥)~~~ ... ,"" (kj, ... , k,,) 

= (2: (kj)J '¥~;:''''''n(kj, ... , kn), i = 1, 2, 3, 
) 

This is equivalent to: 

P;=- f dklkll?;a'''(k) (!;..."-d~kfr)ay(k), 

P o=- f dk IkI 2 a'''(k) (!;,,"-2d ~k/f;) av(k). 

Equations (52) and (53) now result directly from (49) 
and (50). 

Corollary 5: Po cannot be diagonalized when dol O. 

Proof: We can write 

Po=-f Ikl 2 dk (~"V+d~kfr) b'''(k)b)k). 
ke C • 

(53) 

Since the commutation rules between b'" (k) and bv (k) 
are diagonal, Po can be put in a diagonal form if this 
can be done for the matrix {g"V +d(klL 'l)/lkI 2}. But it 
is readily seen this is impossibleo 

Pvoposifion 8: The vector potential operator has the 
following form, 

A" (x) = f dklb '" (k) exp(i1?x) + b" (k) exp(- ill.X)] 

+d-akf 1~2 {Ui -xolkl) kpb+O(k)exp(iI?x) 

- (2\ +xolkl) l?pbP(k)eXP(-ill.X)\ 

- ib iJ; f dk[lzp b+P(k) exp(iJz,x) -12p bOCk) 
It REC+ 

x exp(- il?x)]. 

Proof: In terms of aIL (k) and a+"(k), (54) is written 

A" (x) =1 dk[a+"(k) exp(ik.x) + a" (k) exp(- ik.x)l 
kEe, 

1633 

- d a~" [xo f 1~~kpa+P(k) exp(il?x) 

+ kpaP(k) exp(- ikx) 1 ] 
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(54) 

(55) 

Let t-" (x) be real functions on JR4 with Fourier trans­
form inf)o(JR4). Let us form fA"(x)f,Jx)d4x. If we 
notice 

(43) results readily from (55). 

To conclude this section, we make some remarks and 
comments, mainly concerning the choice of the test 
function space. 

It is usual to take these test functions in S(JR4) or 
U(JR4). However, the restrictions to C. of their Fourier 
transform is not a basic space for distribu-
tion theory since their derivatives of any order are not 
defined at the vertex of the cone. If we want to define 
the a" (k) [and a+1L (k)] as operator distribution, we must 
impose regularity conditions at this point. These con­
ditions may be more or less drastic, but we must have 
it, when d* 0. Our choice of functions with Fourier 
transforms in Uo(JR4) is merely a matter of mathemati­
cal convenience and simplicity. Nonetheless, we must 
notice that, in the subspace of physical vectors, the 
cumbersome term in (29) does not contribute and we 
can use S(JR4) [or L)(JR4)] as test functions space. 

This conclusion is implicit in formula (54), which 
shows that our vector potential differs from the vector 
potential of the Gupta-Bleuler theory only by a gradient. 
But one cannot think that a convenient gauge transforma­
tion brings back all the previous construction to the 
Gupta-Bleuler case because such a gauge transforma­
tion restricted to the one-particle subspace would trans­
form Ud(a,A.) into Uo(a,A.); and, from Corollary 2, this 
is impossible. 

Finally, we add a few words about the discarded case 
A = 0 in (28). All correspon.ding representations are 
equivalent. Furthermore, there exist only degenerate 
sesquilinear forms, so that we shall be unable to 
uniquely define annihilation operators as adjoints of 
creation operators. Therefore, these representations 
are not suitable for a quantization process. It can be 
applied only when starting with the representation de­
fined on the quotient of E + F by the kernel of the de­
generate forms. But this representation turns out to be 
the direct sum of the unitary representations with zero 
mass and heliticities = 1, - 1, and 0, for which the 
quantization is straightforward. 

5. CONCLUSION 

Let us assume d*~. Then B(x) can be eliminated 
between (46) and (47) and we get the unique field 
equation 

It can be derived from the Lagrangian density, 
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(56') 

For ;\;t' 1, L (x) is nonsingular, so that we can perform, 
a priori, canonical quantization. The corresponding 
commutation relations are 

lA~(x),AU(y)lxo=Yo=o=[rr"(x), nV(y)]xo=Yo=o, 

[w (x),NCv)Lo=yo=o ::= T g~V6(x_ y), 

with 

n" (x) == _ a~~ (x) + ;\g"o(apN(x)). 
uxo 

(57a) 

(57b) 

(58) 

Now, it can be verified that the expression (54) of 
A~ (x), when the constant b is equal to zero, provides 
a complete solution of (56) and (57), which has been 
derived from purely group theoretical considerations. 
Thus, we know that (56) and (57) can be solved, at 
least if we assume that the distribution operators are 
defined on suitable test function spaces, 

Conversely, if we start from the field equations (56) 
and the canonical quantization (57), what solutions can 
we get and what test function spaces are needed for their 
definition? We first note that the commutation relations 
(57) imply that A ~ (x) is a distribution in X, depending 
parametrically on xo' Therefore, it is convenient to 
write the solutions of (56) in a form well suited to the 
Cauchy problem. Among various possibilities, we take 
the following 

;\ 
A~(x)=a~(x)+2 a~xoT, 

where the operator distributions a" (x) and T(x) must 
satisfy 

[la" (x) =0, [~T(x)::=O, 

aT 1 ~ () 
ilxo = 1 _;\ a a" x • 

(61) 

(62) 

The first two equations imply that the Fourier trans­
forms, with respect to x, of a" (x) and T(x) are dis­
tributions in the dual variable k, multiplied by 
exp(± ixo I k I). But such a factor is not a C~ function 
in k at the origin. Therefore, either the Fourier trans­
forms of a" (x) and T(x) are zero order distributions, 
or we must impose restrictions on the behavior at the 
origin of the admissible test functions. It is just what 
we have done previously in defining A~ (x) as a distribu­
tion on test functions with Fourier transforms in LJ o(1R4

). 

If we adopt such a point of view, we can write, since 
any contribution from the origin is vanishing, 

a~ (x) = J:cc• dk[a+~ (k) exp(ik.x) + a~ (k) exp(- i/?x)] 

and, using the canonical commutation relations, we get 
the same commutation relations as for the a~ (k) and 
a+"(k) in Sec. 4. 

1634 J. Math Phys., Vol. 19, No.7, July 1978 

Thus, it can be thought that there is a full equivalence 
between our group theoretical construction completed 
by the Fock process and the Lagrangian formalism com­
pleted by the canonical commutation relations. Never­
theless, this equivalence takes place only on a formal 
level insofar as, from the Lagrangian point of view, 
the mathematical problem is not well defined from the 
beginning. It is only at the end of the calculation 
process that this problem can be precisely settled. On 
the contrary, in the group theoretical approach, there 
are no ambiguities at all and the quantization process 
is founded on a firm ground. Furthermore, whereas 
in the Lagrangian version, we cannot treat directly the 
case d = ~ (;\ = co), it does not matter from the group 
theoretical point of view. To tell the truth, one can 
raise the objection that (46) and (47) are derivable 
from a Lagrangian formalism for any finite d. But then, 
the ghost field B(x) occurs explicitly in the Lagrangian, 
which is singular, (see ReL 4) the canonical quantiza­
tion does not make sense, and the mathematical prob­
lem is even less determined than when starting with 
(56'). Once more, it is the group theoretical treatment 
which brings about consistency and closeness. 

It must be pointed out that group theoretical treat­
ment leads to a kind of representations called "unde­
composable representations" in Ref. 5, where their 
appearance in theoretical physics has been strongly 
related to the existence of zero mass particles. From 
this point of view, our work shows that the set of un­
decomposable representations is not restricted to the 
family of representations induced by undecomposable 
representations of the little group. It seems to us that 
this opens a new and very large domain of research, 

Finally, it is noteworthy that the field theories we 
built above are such that c:::: 2" A~ (x) = O. It has been 
shown in Ref. 6 that this gauge condition is the simplest 
linear gauge condition which is conformal invariant. It 
may be asked whether all electromagnetic field theories 
verifying this gauge condition have been obtained in the 
present paper. We hope to soon give an answer to this 
question,. 
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Multiplicity-free 6-j symbols and Weyl coefficients of U(n): 
Explicit evaluation 
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An explicit expression has been obtained for all known multiplicity-free 6-j symbols of U( n), i.e., 6-j 
symbols of the following three types, where anyone of its columns consists of (\) two totally symmetric 
representations, (2) one totally symmetric and one conjugate to the totally symmetric, and (3) two 
conjugate to the totally symmetric. The symmetry properties of the multiplicity-free 6-j symbols of ll( n ) 
under permutation of columns, inversion of any two columns, and conjugation are given. Some general 
theorems concerning the multiplicity-free 6-j symbols of U(n) or more precisely, the multiplicity-free 6-j 
symbols of the "SU(n) type" have been obtained. Since the Weyl coefficients of U(n) are basically 6-j 
symbols of U(n -1), we also conclude that the Weyl coefficients of U(n) have been explicitly obtained. 
This result implies that the d function of U(n) can be completely and explicitly written down in terms of 

the Weyl coefficients. 

1. INTRODUCTION 

The problem of classifying multiplicity-free 6-j symbols 
of U (n) is closely connected with the classification of the 
multiplicity-free 3-j symbols ofU(n). In the latter case it is 
known that the 3-j symbol is multiplicity-free if one of the 
three irreducible representations is totally symmetric, i.e., of 
the type (p,O), or conjugate to the totally symmetric repre­
sentation, i.e., of the type (P,O). Extending this result from 
the 3-j symbol to the 6-j symbol, we can say that a sufficient 
condition for a 6-j symbol ofU(n) to be multiplicity-free is 
the following: (1) Anyone of its columns consists of two 
totally symmetric representations, i.e., of the type (p,O), 
(q,O), (2) one is of the type (p,O), one is of the type (g,O), 
(3) two are of the type (P,O), (g,O). This is a sufficient condi­
tion, but need not be a necessary condition because we do not 
know whether a 3-j symbol can be accidentally multiplicity 
free even if none of the three representations are of the type 
(p,O) or (P,O). In other words, it may be possible that the 
complement to the null space of the tensor operator is one 
dimensional. We do not know of any such cases, but we do 
not have any proof that they do not exist. We suspect that the 
condition is both necessary and sufficient, but we shall leave 
this point to be clarified in the future. At any rate, for all 
practical purposes, the three cases mentioned above are the 
only known cases for the multiplicity-free 6-j symbols of 
U (n ). In this paper we shall give an explicit expression for 
all the three cases mentioned above. In fact, we find that they 
are all equivalent to each other, differing from each other by 
at most a phase factor. 

Besides its intrinsic value, the 6-j symbol ofU (n) is also 
of interest in connection with the finite transformation d 
matrix ofU(n), since it is connected with the Weyl coeffi­
cient ofU(n + 1), as Holman! and Wong2 have pointed out. 
However, Holman has only shown that the Weyl coefficient, 
as a 6-j symbol, can be written as a sum oyer the product of 
four 3-j symbols, but did not succeed in explicity evaluating 
the 6-j symbol, whereas we wish to give in this paper an 
explicit evaluation of the 6-j symbol, and not merely as a 
product of four 3-j symbols. 

There are two ways to attempt an explicit evaluation of 
the 6-j symbol. One is to simplify the expression where the 6-j 

symbol is written as a sum over the product offour 3-j sym­
bols. This is the method used by Racah' to obtain the Racah 
coefficient ofU (2). However, this method is extremely labo­
rious, and without the genius ofRacah, we can hardly expect 
to make any progress on this line. The other way is to obtain 
the 6-j symbol from a 9-j symbol, by putting one of the terms 
in the 9-j symbol equal to zero. It is along this line that we 
shall proceed to obtain an explicit evaluation of the 6-j sym­
bolofU(n). 

There have been two formulas given connecting a 9-j 
symbol in U(n) with an isoscalar factor in U( n + 1). One 
was given by Alisauskas, Jucys, and Jucys,"\ where fi,:e 
terms in the 9-j symbol are totally symmetric, i.e., (p,O), 
(q,O), (p-q,O), (r,O), and (r',O). The other was given, inde­
pendently, by Wong2 (henceforth referred to as I), where 
two terms are totally symmetric, i.e., ( W",O) and ( W .,,0) 
while three terms are conjugate to the totally symmetric re­
presentation, i.e., (P,O), (g,O), and (p·:_q,O). By putting 
q =p, these two expressions give us immediately an explicit 
expression for the 6-j symbol of 1) ( n ) for cases t 1 ) and (2 ) 
above. The third case can be easily rdated to the first case by 
taking conjugation on all six representations, as we shall 
show in Secs. 2 and 3. 

Thus the statement we arc making is actually very sim­
ple. Essentially we are saying that the multipliCIty-free 6-) 
symbols ofU (n ) can be explicitly evaluated from the known 
multiplicity-free isoscalar factor ofU (n + 1), where, in par­
ticular, one can putp=q and mnn=m'nrr=O. We shall call 
this particular isoscalar factor "mfppssir' for "multiplicity­
free p, p, semistretched isoscalar factor," 

The multiplicity-free 3-j symbols of U( n l have been 
evaluated by many authors:6J In particular. Chllccin et al." 
have obtained the 3-j symbol of U (n ) as a ~um over n - 1 
variables, while Alisauskas et af.' have obtained, in addition 
to the result above, another expession, which, in our present 
case, reduces to a sum over n - 2 variables, 

Thus in this paper we report the following four results. 

1. We have obtained explicit expressions for all known 
multiplicity-free 6-j symbols ofU( n), i.e., 6-j symbols oftht 
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three types mentioned above. 2. We have obtained symme­
tries of the multiplicity-free 6-j symbol of U(n) under per­
mutation of columns and inversion of any two columns, and 
also under conjugation. 3. We have obtained some general 
theorems concerning the multiplicity-free 6-j symbols of the 
"SU (n) type", where there is a zero at the end of each irre­
ducible representation. 4. We have obtained explicit expres­
sions for all the Wey I coefficients of U (n ), and therefore 
explicit expressions for all the finite transformation d matri­
ces ofU(n). 

This paper contains six sections. In Sec. 2 we give the 
definition of the multiplicity-free 6-j symbols of U (n) and 
their symmetry properties under permutation of columns 
and inversion of any two columns, and also under conjuga­
tion. In Sec. 3 we give an explicit expression for the three 
types of multiplicity-free 6-j symbols of U (n). In Sec. 4 we 
discuss the 6-j symbol ofU (2). Since all 6-j symbols in U (2) 
are multiplicity-free, our method completely solves the 
problem of the 6-j symbol of U (2). We show how our result 
agrees with Racah. 3 In Sec. 5 we state and prove some gener­
al theorems concerning the multiplicity-free 6-j symbols of 
U (n). All these theorems deal with 6-j symbols when there is 
a zero at the end of each irreducible representation. We call 
these 6-j symbols of the "SU (n) type". In Sec. 6 we discuss 
the Weyl coefficients of U (n) and offer some suggestions as 
to future topics of research. 

2. DEFINITION OFTHE MULTIPLICITY-FREE 
61 SYMBOL OF U(n) AND ITS SYMMETRY 
PROPERTIES 

We shall use the following notation for the different 
coupling coefficients. A Clebsch-Gordan coefficient is de­
noted by 

C(~l ~z ~J 
A 3-j symbol is denoted by a paranthesis only; thus, 

(~l ~z ~J 
is a 3-j symbol. A 6-j symbol is denoted by a brace: 

VI jz lIZ}. 
[h J ]z3 

We define the multiplicity-free 6-j symbol of U (n) by 
first recalling the definition of the 6-j symbol of U (2). A 6-j 
symbol is the transformation coefficient through the follow­
ing two different ways of coupling: 

(2.1 ) 

As is well known,8 the 6-j symbol can be written as a 
product of four 3-j symbols, i.e., 
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xc(jz 
mz 

jz 
mz 

x( i; 
-m3 

.. 
h 

jz 
m 2 

-mz 

J* 

i2l) 
m23 

X(i3 
ml -M 

i12 ) 
m l2 

J 
M 

It) 

Now we generalize the definition of the 6-j symbol from 
U(2) to U(n), using the phase convention given in I. Thus, 
for example, 

( -1 )j,_( _l)E"(m\',,'-m~,',,'l, 

(_l)m,_( -l)~:' ,'!zl", 

where 
I i+1 

zi=(i+l) I mji-i I mj,i+l (2.3) 
j~l j~l 

and En is defined in I. More explicitly, 

En= 1/2 for n =2+4k 
=1 forn=3+4k, 
=3/2 for n=4+4k, 
=0 for n=5+4k, k=O,I,2,.··. 

(2.4 ) 

In Eq. (2.2) an asterisk denotes the conjugation oper­
ation.9 Thus 

m*ij=m1n-mj __ i+ IJ' (2.5 ) 

The symmetry properties of the 6-j symbol of an arbi­
trary group have been discussed by Derome and Sharp.I()-12 
In connection with Derome's work, we would like to make 
two observations. The first observation concerns the very 
existence of the 3-j symbol itself such that its absolute value 
is invariant under every permutation of the j's and of the 
corresponding m's. It has been shown by Deromell that in 
general the 3-j symbol cannot be chosen in symmetric form if 
jl,j2,j*3 are equivalent representations, except in the case of 
SU (3).12 However, in the situation we are dealing with, i.e., 
one of the three representations being of the form (p,O) or 
(p,O), this case cannot arise, since if two are of the form 
(p,O), (P,O), the third must be (p,p,O), which is conjugate to 
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(p.D) only for V (3), for which the symmetric 3-j symbol can 
be defined. Similarly, for two (p.D), (P,D), the third must be 
(p,D,D), which is conjugate to (p.p,D) only for V(3). Thus 
the existence of the multiplicity-free 3-j symbol of V (n) is 
assured. The second observation concerns the possibility of 
extending the phase conventions in V(2) to V(n). It has 
been shown by Wigner13 that if one is dealing with a simply 
reducible (SR) group, then the symmetry properties of the 
3-j symbols of that group are essentially the same as R (3), 
and the phase conventions ofV(2) and R(3) can be ex­
tended to that group. The definition of a simply reducible 
group is (1) it is ambivalent, i.e., every element of the group 
is in the same class as its inverse and (2) it is multiplicity 
free. Now in the case ofV(n), n-=l=2, we are dealing with the 
multiplicity-free cases only, so the second condition is auto­
matically satisfied. The first condition can be stated alterna­
tively as: The conjugate representation is equivalent to the 
original representation. Now in the phase convention we 
have chosen in I, the conjugate representation has the same 
phase as the original representation. Therefore, in the pre­
sent situation, the symmetry properties of the multiplicity­
free 3-j symbols of V (n) with regard to the phase convention 
are essentially the same as a simply reducible group, such as 
V(2). We can therefore extend the phase convention from 
V (2) to V (n ), for the multiplicity-free case. 

We now state the symmetry properties of the multiplic­
ity-free 6-j symbol ofV(n). 

1. Interchange columns 1 and 2. 

jt-jl,jr~J*, J-j;'jZ3+-----+j;3 

We have 

fit jz itl} _ {il il ill} Ul J iZ' - J* i; i;3' 
2. Interchange columns 1 and 3. 

jl-j~Z,jIZ-i~,il-j;), 

i2,-j;, J~--~.J*. 

We have 

fjl i2 jlz} = Ii]2 i
J
'Z Ii}. lI, J Jzl liz) 13 

(2.6) 

(2.7) 

3. Inversion of columns 1 and 2. 

it-i" iz-J*, J-i;, jt2+-----+i~2' j23+-----+i~3· 
We have 

B: ~ ~::} = t: ~; ~I~}· 
4. Inversion of columns I and 3. 

k--..i;, i,-j~, ilz-i;3' 

jz,-i~2,iz+-----+i;, J+-----+J*. 

We have 

(2.8) 

(2.9) 

Note that these symmetry properties are not entirely 
the same as Derome and Sharp, to or Resnikoff'4 for SV (3). 
This is because, basically, there is a difference in the defini­
tion of the 6-j symbol between various authors. Our defini­
tion is taken from Edmonds, g which agrees with the conven­
tional definition of the 6-j symbol for V (2) or R( 3). 

5. Symmetry of mf6-j symbol ofV(n) under 
conjugation. 

Vnder conjugation, we have 

(2.10) 

Combining (2.7) and (2.9) with (2.1 D), we can also 
write 

B: iz Ill} =B' il Ill} (2.11 ) J ill I J ill 

=~IZ 
.. 

II} h (2.12) 
2l J }J 

etc. 

Equation (2.10) is particularly useful in obtaining type 
3 6-j symbols of V (n) from type 1, as we shall show in the 
next section. 

3. EXPLICIT EVALUATION OF THE THREE TYPES OF MULTIPLICITY-FREE 6-j SYMBOLS OF U(n) 

Let us start with the explicit evaluation of the multiplicity-free 6-j symbol of V (n) of the first type. Without loss of 
generality, we can choosejl andj, to be totally symmetric, andj2 to be of the form [mr.n-r, ... ,mn - t.n-l'0]. Thus the 6-jsymbol 
of type 1 is of the form 

[ml,n-l,· .. ,mn-l,n-l'O] 
[m l,n+ l,· .. ,mn,n+ d 

with the constraints 
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Equation (3.1) and (3.2) follow necessarily from the formula for the Wigner coefficients ofU(n) for the totally symmet­
ric representation, since otherwise the Wigner coefficient is equal to zero. 

Now i.\lisauskas, Jucys, and Jucys4 have given a formula relating a doubly stretched 9-j symbol in U(n-l) with an 
Is()scltlar factor of a totally symmetric tensor operator in U (n). We can obtain their result by using the technique developed in I 
tor the derivation ofEg. ( 1.17) in I, except that the states (P,O), (q,O), (p ~q,O) are changed to the totally symmetric ones (p,O), 
(q,O), (p-q,O) respectively. The result is 

lil,o!,. , 

.. f liP --4,OJ, 

[p,OL, I 

[rn' i,11 -- 1,···,!n'lI --l,n-- 1] (nl 1,n __ l,···,mn-l. n - \] 

x {jt(m1n, ... ,mn --I,n)1(m'l,n_I, .. ·,m'n_l.n_l) W n!(P-q)lq!}I!2 

,"1I(m'''n,· .. ,m'n_l.n)~/I(ml.n_I, .. ·,mn_l.n_l) Wn! p! 

11~:~11 
m', ... ,m'n_1.n,O ) 
, . 

m I,n-I, ... ,mn-I,n-I 
(3.3 ) 

Equation 0.3) differs from (Bl) of Alisauskas, Jucys, and Jucys by only a dimensional factor, which is due to difference 
of definition of the 9-j symbol of U (n - 1 ). 

By setting q = p in Eq. (3.3), we obtain 

{
[Wn+. l ,OJ [ml.n_I'· ... mn __ I.,,_I'OJ [m'ln, ... ,m'nnJ} 

[p,O] [m l .n+l'···,mn,n+d [mln, ... ,m nn ] 

'< {._ft em l.n -+ 1 ... ·,m",I1+ 1)·_11 (m l,n--I, ... ,mn-I,n-I' O)} 112 

.If(m' In,· .. ,m' nnvl1(mln,· .. ,mnn) 

I~:gll (3.4 ) 

Now the isoscalar factor "mfppssir' in (3.4) has been evaluated by many authors, and we shall quote only two 
r.::sults. one by Chacon, Ciftan, and Biedenharn6 (also obtained by Alisauskas, Jucys, and Jucys4), and the other by 
Alisauskas et al.· Both results can be expressed in terms of Snm defined by Chac6n et al. 6 The first result is expressed as a 
sum over n -- I variables. The second over n - 2 variables. The first one is 

( 
fm1" 

ImL'l 

X Snn([m] n,[m] n)S".n_l«m'] n,[m' ]n_l)Sn_l,n_l([m] n_I,[m'] n-I) 

, Snn([m] n' [m'] n)Sn.n_I([m] n' [m] n-I) 

X s ([m'] [m'] )" (_1)r.,.-.+ ... +r._ .•.• _. n-I,n-I n-I' n-I ~ 
(rl._. 

{ 
Sn,n_I([m] n' [m'] n-I + [r] n_I)Sn_l,n_I([m']n_1 + [r] n_I,[m'] "-\ + [r]n_l) 

X Sn,n_I([m'l n, tm' ]n-I + [r] n_I)Sn_l.n_l([m I n_I,[m'] n-I + [r]n-l) 

(3.5 ) 

whe!'': 

J Math pnys . 'JO! 19, No 7. July 1978 MKF. Wong 1638 



                                                                                                                                    

The second formula is 

Snn([m] n' [m] n)Sn-l.n-l([m'] n-I' [m' ]n_I)Sn.n_l([m] n' [m] n-I) 

X Sn.n_l([m']n' [m']n_I)Sn_l.n_I([m]n_I' [m' ]n-I) 

n 

XSnn([m]n,[m'] n) 2: (-l)~· 
j=2 

where 

When applying the formula for S.m on [r]., it is understood that, since r ln does not exist, all factors containing 

rln should be automatically removed. 

( 3.6) 

At first sight, Eq. (3.6) seems to contain a sum over n - 1 variables. However, for the semistretched case, mnn = m' nn' it can 

be seen thatrnn=mnn=m' nn' Thus the sum over rnn can be trivially done. In our present case, sincemnn=m'nn=O, rnn=O. Thus 
for the "mfppssif' ofU(n), (3.6) is a sum over n -2 variables only. 

The multiplicity-free 6-j symbol of U (n) of type 2 is obtained from Eq. (1.17) ofI, by putting q=p. The result can be 
expressed in terms of the 6-j symbol of type 1, since they differ only by a phase factor: 

{ 
[Wn+ I'D] [ml.n_I,· .. ,mn_l.n_I'O] [m' In, .. ·,m' nn]} 

[p,O] [ml.n+I, ... ,mn.n+d [mln, ... ,mnn ] 

=( _l)-Y<m,M •.... mnJ-Y<ml,n+, ..... mn.M+,){[ W[pn+',o.I]'O] [ml.n_ p ... ,mn_l.n_I,O] 
[ml.n+I, .. ·,mn.n+l] 

(3.7) 

where 
n-I 

y([m]n) = 2: min for n=4,6,8, ... ,2k 
i=2 

=0 for n=2,3,5, ... ,2k+ 1. 

The multiplicity-free 6-j symbol of type 3 can be obtained from that of type 1 by using Eq. (2.10). We have 

{ 
[Wn+I'O] [ml.n_I, .. ·,mn_l.n_I'O] * [m'ln, .. ·,m' nn] *} 

[P,O] [ml.n+ I, .. ·,mn.n+ d * [mln,· .. ,mnn ] * 
_ {[ Wn+.I,O] [ml.n_I, .. ·,mn_l.n_I'O] [m'ln, .. ·,m' nn]} 
- [P,O] [ml.n+I, .. ·,mn.n+d [mln, .. ·,mnn ]· 

( 3.8) 

Thus we have obtained the multiplicity-free 6-j symbol ofU (n) for all three types where the totally symmetric or conjugate 
to the totally symmetric representations occur in the first column. If, however, they occur in the second or third column, then 
we can use Eqs. (2.6) and (2.7) to change them back to the first column. Finally, ifin type 2, the conjugationi is inverted, i.e., 
first row first column is of the form (P,O) and second row first column is of the form ( Wn + I'D)' then we can use either (2.8), 
(2.11), or (2.10) to relate it to (3.7). 

4. 6-j symbols of U(2) 
Since in U(2), a1l3-j symbols are mUltiplicity free, we conclude that all the 6-j symbols ofU(2) can be obtained from Eq. 

(3.4). The result, of course, must agree with Racah's result, and we proceed to demonstrate this fact. 

If we write the 6-j symbol of U (2) in terms of the angular momentum label j, we have the following relation: 

1639 

[mll'O] 
[ml3,m23] 
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then 

. IW' I(' , ) jl= 2 3,jI2=1 m l2- m 22, 

j2=!m,,,j23= !(m 12 -m22), (4.2) 

jJ =!p, J = !(m 13 - m23)' 

Now if we evaluate the 6-j symbol ofU(2) according to (3.4) and (3.6), we find that it reduces to a sum over a single 
variable. The resulting formula is identical to the "doubly stretched" 9-j symbol ofU (2), found, e.g., in Eq. (4) of Sharp, 15 with 
one term equal to zero (i.e., d = ° in Sharp's formula). Since a 9-j symbol with one term equal to zero is clearly a 6-j symbol, this 
immediately gives us the required result. More explicitly. after putting d = ° in Sharp's Eq. (4), we can write it as a hypergeome­
tric functionJ"J( W, 1) equivalent to Minton's'6 Eq. (7). Then J"3(W, 1) is connected with Racah's expression through Minton's 
Eq. (3a). Thus our method gives the complete result for the 6-j symbol ofU(2). 

The multiplicity-free 6-j symbols of other U(n) groups can be evaluated explicitly using (3.4) and (3.5) or (3.6). However, 
instead of writing down those expressions explicitly for the other groups, which one can obviously do, we shall show that there 
are some general theorems concerning the multiplicity-free 6-j symbols of U (n ). This we do in the next section. 

5. SOME GENERAL THEOREMS CONCERNING MULTIPLICITY-FREE 6-j SYMBOLS OF U(n) 
In this section we would like to state and prove some general theorems concerning the multiplicity-free 6-j symbols of 

U (n). These theorems are all connected with irreducible representations with one or more zeros at the end. Therefore they can 
all be called 6-j symbols of the "SU(n) type," since for an irreducible representation ofSU(n), mnn=O. 

Theorem 1: A multiplicity-free 6-jsymbol of the "SU(n) type" is equivalent to a multiplicity-free 6-j symbol ofU(n -1). 
Mathematically, this theorem says: 

{
[ Wi)] 
[p,O] 

[m' l.n_I,· .. ,m' n_l.n_I'O] 

[mln,· .. ,mn-l.n'O] 
[m'ln,· .. ,m'n-l.n'O] } 

[m l .n_ j, ... ,mn_l.n_I,OJ U(n) 

d· [' , J d' [ J 1/2 x( 1m m In' .. ·.m n-I.n U(n) 1m ml.n_I,· .. ,mn_l.n_1 U(n-I)) 

dim[m' In,· .. ,m' n_l.n'O] U(n) dime ml.n_I,. ... mn_l.n_1>0]U(n) 

em' I.n-I,· .. ,m' n-I.n-I] 
[mln, .. ·,mn_l.n] 

where En has been defined in Sec. 2. 

[m'ln.···.m'n_l.nJ } 
[mj,n_I' .. ·.mn_l.n_d U(n-I) 

(5,1) 

Equation (5.1) is quite simple and easy to remember. Apart from the phase factor and dimensional factor, which are 
connected with the definition of the 6-j symbol, Eq. (5.1) says that in order to change from a multiplicity-free 6-j symbol in 
U(n), with a zero at the end of each irreducible representation, to a multiplicity-free 6-j symbol in U (n - 1), all one has to do is 
"drop off the zero at the end of each irreducible representation." We shall give two proofs for Theorem 1. 

Proof 1: By direct calculation using (3.6)! This was actually the way we arrived at the theorem. Note that the actual 
calculation using (3.6) is not trivial, since the Snm functions with or without a zero at the end are not the same. However, it turns 
out that after multiplying all the eleven terms of Snm together in (3.6), the extra factors all cancel out, and the theorem is 
proved. 

Proof2: After completing the proof of Theorem 1 through the (laborious!) method above, we realized that there is a more 
direct, and, we think. elegant. proof. This is through the isoscalar factor (mfppssif) between U(n + I) and U(n). Using (3.4) 
again, we find that (5.1) is equivalent to the following relation between the mfppssif of U (n + I) and U (n). 

( 5.2) 

Equation (5.2) is obviously true, since all one does is "drop offa zero" at the end of each irreducible representation on the 
left hand side of the equation. 

It is interesting to apply Theorem 1 to SU (3), and compare with the work of Resnikofr 4 
( 1965) and Alisauskas 17 ( 1969). 

Theorem 1, when applied to SU (3), gives, in the most general case, i.e., two irreducible representations totally symmetric, 
the same result as ( 11'. 5b) of Alisauskas, 17 apart from a dimensional factor, which is due to difference of definition. In addition, 
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when there are three irreducible representations totally symmetric, one gets the result of ( 1T.2) of Alisauskas, again, apart from 
the dimensional factor. [Note that m =0 in Alisauskas' Eq. (1T.2).] 

With regard to ResnikotI's work, it is interesting to note that Resnikoff obtained the correct number of terms when 
calculating the 6-j symbol of SU (3) with three irredicuble representations totally symmetric. However, some of his terms are 
unfortunately incorrect. As a result, Resnikoff did not realize that his Eq. (4.6) is none other than the 6-j symbol ofU(2). We 
would like to express our admiration for his courageous effort in calculating the 6-j symbol of SU (3). We hope he will accept 
our correction to his formula. 

The following four terms on the neumerator of ResnikoffEq. (4.7a), 

should read 

The following two terms on the denominator of ( 4. 7b), 

(PJ2 -s)!(k lO - P24 - P4J -s)!, 

should read 

(pl2 - P12 +S)!(P4J + P2l - P2J -s)! 

Corollary 1: Theorem 1 is still true, with the appropriate change of phase factors, when the irreducible representations in 
( 5.1) are changed from type 1 to types 2 and 3. 

The corollary can be easily proved by using Eqs. (3.7) and (3.8). When applied to SU (3), this corollary gives the results of 
Alisauskas (1T. 3) and (1T.4). 

The next series of theorems deal with 6-j symbols of U (n) with three irreducible representations totally symmetric. 

Theorem 2a: A 6-j symbol in U (n) with three irreducible representations totally symmetric is reducible to a sum over one 
variable only, and can therefore be expressed as a generalized hypergeometric function with unit argument. 

Proof Let us say in the 6-j symbol in U(n -1) 

[m']n } 
[m]n_l 

[m']n-l is totally symmetric. Then from (3.6) we have the term 

The result is that r3n=r4n=· .. =rnn=0. Thus there is only one sum left, i.e., a sum over r2n" 

Theorem 2b: When a 6-j symbol in U (n - 1) has three irreducible representations totally symmetric, then [m 'In can have at 
most two rows nonzero in the Young tableaux, [m]n _ 1 can have at most two rows nonzero in the Young tableaux, and 
have at most three rows nonzero in the Young tableaux. 

Proof From Eq. (3.6) and the definition of Snm, we find that Theorem 2b is true, for otherwise, the 6-j symbol will have 
factorials of negative integers. 

Theorem 2c: All 6-j symbols of U (n), n > 3, with three irreducible representations totally symmetric are equivalent to 
the 6-j symbol of U (3). 

Proof Combining Theorems 1 and 2b, we can drop off all the zeroes at the end of each irreducible representation. 
Since the largest number of nonzro rows in the Young tableaux of the irreducible representations in the 6-j symbol is 
three, we conclude that U (3) is the smallest group to which all other groups for n> 3 can be reduced. 

Theorem 2d: All 6-j symbols of U(n), n > 3, with three irreducible representations totally symmetric can be written 
as a "P, fUnction with unit argument. 

1641 

Proof Using Theorem 2c, we only need to calculate the 6-j symbol in U(3) of the form 

[m'12'0,0] 
[mll,m2"m,,] 
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We find, however, that this 6-j symbol in V (3) can be written as a J', function with unit argument. 

Theorem 2e: All 6-j symbols of V (n) with three irreducible representations totally symmetric can be written as a J'l 
function with unit argument. 

Proof We know that for U (2), the 6-j symbol can also be written as a .Fl function with unit argument. Therefore Theorem 
2e is true for all n. 

Theorem 2f A1l6-j symbols ofU (n ) with three irreducible representations totally symmetric are reducible to a 6-j symbol 
in D(2). 

Proof We finally compute the expression in (5.4) and find that it is reducible to a 6-j symbol in V(2). More precisely, 

{ [W'.i>] [m'l2,O,Q] [m'13,m' ",OJ} 
[p,uJ [m13,m2],mn J [m'n,mn,OJ 

= [ (m t.-m31+ 1)!(mn-m31)!m,,!(mn+2)!(m23+ l)!(m'l2+ 1) (m't2+ 1)!(m\3-m31+ l)!(m'n-mlJ)!]If2 

(mn-mJ)+2)!{mn- mn+ 1)!(m'12-mn+ 1)!(m12+ 1)!m22! (m'n+ l)!m',J!(m'12-m'l+ I)! 

X( _l)m"+m,, {[ W, -m3),O] [m'l2- mn,O] [m'tJ- mll,m'2J- mnl} (5.5) 
[P- m 13,O] [mB- mn,m2,-mlJJ [mI2-ml3,m22-mn] U(2) 

X measure factor X dimensional factor, where 

(5.6) 

(5.7) 

Corollary 2: All Theorems 2a-f are true, with the appropriate change of phase factors, when one or more of the irreducible 
representations in the 6-j symbol of U (n) are changed to their conjugate representations. 

The proof follows from Eqs. (3.7) and (3.8). 

6. WEYL COEFFICIENTS OF U(n) 
What we have said about the multiplicity-free 6-j symbols ofU (n) can be equally applied to the Weyl coefficients ofU (n). 

In particular, we wish to stress that the Weyl coefficients ofU (n) are now explicitly known. If one uses Eq. (3.6), then the Weyl 
coefficients ofU (n ), being equivalent to a multiplicity-free 6-j symbol in U (n - 1 ), can be written as a sum over n - 2 variables. 
We thus assert that the representation function ofU(n) is also explicitly known, in that we can write down the d-function of 
U(n) completely and explicitly if we so wish. The d-function ofU(n) can be compared with the double boson polynomial of 
V (n ). In I, we have given the relation for U (3). Similar relations can obviously be obtained for higher order groups. The double 
boson polynomial can be obtained through Moshinsky's worka for the highest weight, and the lowering operators of Nagel and 
Moshinsky.t~ However, Holman] has already given an explicit expression for thed functions ofU(n ) in Eqs. (2.16) and (2.19) 
of Ref. l. Also an explicit expression has been given by Ciftan 10 for U ( 4). We can therefore regard this part of the problem as 
essentially solved. 

Another question, however, which still remains somewhat mysterious, is the Regge,l symmetry of the 6-j symbols ofU (n ). 
We have shown in I that the 144 Regge symmetries ofU(2) can be regarded as the symmetry of the Weyl coefficients of 
U (3)·U (3) for the following state: 

J2+J)-KI 

J2 K'-J) K, J2+J3-K) o . (6.1 ) 
J3 K 2-J1 

J2+J,-K, 

The 144 symmetries ofRegge are then made up of separate permutations of Jo, J l , J2, and J), with separate permutations of 
Kit K 2, and Kh subject to the constraint 

Jo+J,+J2+J,-KI-K2-K3=O. (6.2) 

The mysterious part is that neither Eq. (3.5) nor Eq. (3.6) gives the full Regge symmetry. If one writes Eq. (3.5) out in 
terms of J; and K; above, one finds that it is symmetric between the interchange of Jo~JIt and J2~J30 but does not give the 
fulI 144 symmetries. Similarly, Eq. (3.6), as we have shown in Sec. 4, is essentially Racah's expression, and therefore does not 
give the full Regge symmetry explicitly. 

This leads us to suspect that there may be yet other expressions for the 6-j symbol or Weyl coefficient ofU(n) which will 
display the full Regge symmetry at a glance. If these expressions can be found, then new Regge symmetries for V (3), U ( 4), etc., 
can also be found. 
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